tomaarsen's picture
tomaarsen HF staff
Create train_script.py
c7c84c3 verified
import logging
import traceback
from datasets import load_dataset
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers.cross_encoder.evaluation.CENanoBEIREvaluator import (
CENanoBEIREvaluator,
)
from sentence_transformers.cross_encoder.losses import ListNetLoss
from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer
from sentence_transformers.cross_encoder.training_args import (
CrossEncoderTrainingArguments,
)
def main():
model_name = "microsoft/MiniLM-L12-H384-uncased"
# Set the log level to INFO to get more information
logging.basicConfig(
format="%(asctime)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO,
)
# The batch size is lower because we have to process multiple documents per query
# This means that the batch size is effectively multiplied by the number of max_docs
train_batch_size = 8
num_epochs = 1
max_docs = 10
pad_value = -1
loss_name = "listnet"
num_labels = 1
# 1. Define our CrossEncoder model
model = CrossEncoder(model_name, num_labels=num_labels)
print("Model max length:", model.max_length)
print("Model num labels:", model.num_labels)
# 2. Load the MS MARCO dataset: https://huggingface.co/datasets/microsoft/ms_marco
logging.info("Read train dataset")
dataset = load_dataset("microsoft/ms_marco", "v1.1", split="train")
def listwise_mapper(batch, max_docs: int = 10, pad_value: int = -1):
processed_queries = []
processed_docs = []
processed_labels = []
for query, passages_info in zip(batch["query"], batch["passages"]):
# Extract passages and labels
passages = passages_info["passage_text"]
labels = passages_info["is_selected"]
# Pair passages with labels and sort descending by label (positives first)
paired = sorted(zip(passages, labels), key=lambda x: x[1], reverse=True)
# Separate back to passages and labels
sorted_passages, sorted_labels = zip(*paired) if paired else ([], [])
# Filter queries without any positive labels
if max(sorted_labels) < 1.0:
continue
# Truncate to max_docs
truncated_passages = list(sorted_passages[:max_docs])
truncated_labels = list(sorted_labels[:max_docs])
# Pad if needed
pad_count = max_docs - len(truncated_passages)
processed_docs.append(truncated_passages + [""] * pad_count)
processed_labels.append(truncated_labels + [pad_value] * pad_count)
processed_queries.append(query)
return {
"query": processed_queries,
"docs": processed_docs,
"labels": processed_labels,
}
dataset = dataset.map(
lambda batch: listwise_mapper(batch=batch, max_docs=max_docs, pad_value=pad_value),
batched=True,
remove_columns=dataset.column_names,
desc="Processing listwise samples",
)
dataset = dataset.train_test_split(test_size=10_000)
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
logging.info(train_dataset)
# 3. Define our training loss
loss = ListNetLoss(model, pad_value=pad_value)
# 4. Define the evaluator. We use the CENanoBEIREvaluator, which is a light-weight evaluator for English reranking
evaluator = CENanoBEIREvaluator(dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=train_batch_size)
evaluator(model)
# 5. Define the training arguments
short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
run_name = f"reranker-msmarco-v1.1-{short_model_name}-{loss_name}"
args = CrossEncoderTrainingArguments(
# Required parameter:
output_dir=f"models/{run_name}",
# Optional training parameters:
num_train_epochs=num_epochs,
per_device_train_batch_size=train_batch_size,
per_device_eval_batch_size=train_batch_size,
learning_rate=2e-5,
warmup_ratio=0.1,
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
bf16=True, # Set to True if you have a GPU that supports BF16
# MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
load_best_model_at_end=True,
metric_for_best_model="eval_NanoBEIR_mean_ndcg@10",
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=1600,
save_strategy="steps",
save_steps=1600,
save_total_limit=2,
logging_steps=200,
logging_first_step=True,
run_name=run_name, # Will be used in W&B if `wandb` is installed
seed=12,
)
# 6. Create the trainer & start training
trainer = CrossEncoderTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
evaluator=evaluator,
)
trainer.train()
# 7. Evaluate the final model, useful to include these in the model card
evaluator(model)
# 8. Save the final model
final_output_dir = f"models/{run_name}/final"
model.save_pretrained(final_output_dir)
# 9. (Optional) save the model to the Hugging Face Hub!
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
try:
model.push_to_hub(run_name)
except Exception:
logging.error(
f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
f"and saving it using `model.push_to_hub('{run_name}')`."
)
if __name__ == "__main__":
main()