Update metadata according to new weights
Browse files
README.md
CHANGED
@@ -3,11 +3,40 @@
|
|
3 |
license: apache-2.0
|
4 |
library_name: span-marker
|
5 |
tags:
|
6 |
-
- span-marker
|
7 |
-
- token-classification
|
8 |
-
- ner
|
9 |
-
- named-entity-recognition
|
10 |
pipeline_tag: token-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# SpanMarker for Named Entity Recognition
|
@@ -28,7 +57,7 @@ You can then run inference with this model like so:
|
|
28 |
from span_marker import SpanMarkerModel
|
29 |
|
30 |
# Download from the 🤗 Hub
|
31 |
-
model = SpanMarkerModel.from_pretrained("
|
32 |
# Run inference
|
33 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
34 |
```
|
|
|
3 |
license: apache-2.0
|
4 |
library_name: span-marker
|
5 |
tags:
|
6 |
+
- span-marker
|
7 |
+
- token-classification
|
8 |
+
- ner
|
9 |
+
- named-entity-recognition
|
10 |
pipeline_tag: token-classification
|
11 |
+
model-index:
|
12 |
+
- name: SpanMarker w. bert-tiny on CoNLL03 by Tom Aarsen
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
type: token-classification
|
16 |
+
name: Named Entity Recognition
|
17 |
+
dataset:
|
18 |
+
type: conll2003
|
19 |
+
name: CoNLL03
|
20 |
+
split: test
|
21 |
+
revision: 01ad4ad271976c5258b9ed9b910469a806ff3288
|
22 |
+
metrics:
|
23 |
+
- type: f1
|
24 |
+
value: 0.8093994778067886
|
25 |
+
name: F1
|
26 |
+
- type: precision
|
27 |
+
value: 0.8546048601184398
|
28 |
+
name: Precision
|
29 |
+
- type: recall
|
30 |
+
value: 0.7687362233651727
|
31 |
+
name: Recall
|
32 |
+
datasets:
|
33 |
+
- conll2003
|
34 |
+
language:
|
35 |
+
- en
|
36 |
+
metrics:
|
37 |
+
- f1
|
38 |
+
- recall
|
39 |
+
- precision
|
40 |
---
|
41 |
|
42 |
# SpanMarker for Named Entity Recognition
|
|
|
57 |
from span_marker import SpanMarkerModel
|
58 |
|
59 |
# Download from the 🤗 Hub
|
60 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-tiny-conll03")
|
61 |
# Run inference
|
62 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
63 |
```
|