tomaarsen HF staff commited on
Commit
db46fd3
·
1 Parent(s): 5679b2d

Upload model

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ library_name: span-marker
5
+ tags:
6
+ - span-marker
7
+ - token-classification
8
+ - ner
9
+ - named-entity-recognition
10
+ pipeline_tag: token-classification
11
+ ---
12
+
13
+ # SpanMarker for Named Entity Recognition
14
+
15
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) as the underlying encoder.
16
+
17
+ ## Usage
18
+
19
+ To use this model for inference, first install the `span_marker` library:
20
+
21
+ ```bash
22
+ pip install span_marker
23
+ ```
24
+
25
+ You can then run inference with this model like so:
26
+
27
+ ```python
28
+ from span_marker import SpanMarkerModel
29
+
30
+ # Download from the 🤗 Hub
31
+ model = SpanMarkerModel.from_pretrained("span_marker_model_name")
32
+ # Run inference
33
+ entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
34
+ ```
35
+
36
+ See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<end>": 119548,
3
+ "<start>": 119547
4
+ }
config.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models\\span_marker_mbert_base_multinerd\\checkpoint-final",
3
+ "architectures": [
4
+ "SpanMarkerModel"
5
+ ],
6
+ "encoder": {
7
+ "_name_or_path": "bert-base-multilingual-cased",
8
+ "add_cross_attention": false,
9
+ "architectures": [
10
+ "BertForMaskedLM"
11
+ ],
12
+ "attention_probs_dropout_prob": 0.1,
13
+ "bad_words_ids": null,
14
+ "begin_suppress_tokens": null,
15
+ "bos_token_id": null,
16
+ "chunk_size_feed_forward": 0,
17
+ "classifier_dropout": null,
18
+ "cross_attention_hidden_size": null,
19
+ "decoder_start_token_id": null,
20
+ "directionality": "bidi",
21
+ "diversity_penalty": 0.0,
22
+ "do_sample": false,
23
+ "early_stopping": false,
24
+ "encoder_no_repeat_ngram_size": 0,
25
+ "eos_token_id": null,
26
+ "exponential_decay_length_penalty": null,
27
+ "finetuning_task": null,
28
+ "forced_bos_token_id": null,
29
+ "forced_eos_token_id": null,
30
+ "hidden_act": "gelu",
31
+ "hidden_dropout_prob": 0.1,
32
+ "hidden_size": 768,
33
+ "id2label": {
34
+ "0": "O",
35
+ "1": "B-PER",
36
+ "2": "I-PER",
37
+ "3": "B-ORG",
38
+ "4": "I-ORG",
39
+ "5": "B-LOC",
40
+ "6": "I-LOC",
41
+ "7": "B-ANIM",
42
+ "8": "I-ANIM",
43
+ "9": "B-BIO",
44
+ "10": "I-BIO",
45
+ "11": "B-CEL",
46
+ "12": "I-CEL",
47
+ "13": "B-DIS",
48
+ "14": "I-DIS",
49
+ "15": "B-EVE",
50
+ "16": "I-EVE",
51
+ "17": "B-FOOD",
52
+ "18": "I-FOOD",
53
+ "19": "B-INST",
54
+ "20": "I-INST",
55
+ "21": "B-MEDIA",
56
+ "22": "I-MEDIA",
57
+ "23": "B-MYTH",
58
+ "24": "I-MYTH",
59
+ "25": "B-PLANT",
60
+ "26": "I-PLANT",
61
+ "27": "B-TIME",
62
+ "28": "I-TIME",
63
+ "29": "B-VEHI",
64
+ "30": "I-VEHI"
65
+ },
66
+ "initializer_range": 0.02,
67
+ "intermediate_size": 3072,
68
+ "is_decoder": false,
69
+ "is_encoder_decoder": false,
70
+ "label2id": {
71
+ "B-ANIM": 7,
72
+ "B-BIO": 9,
73
+ "B-CEL": 11,
74
+ "B-DIS": 13,
75
+ "B-EVE": 15,
76
+ "B-FOOD": 17,
77
+ "B-INST": 19,
78
+ "B-LOC": 5,
79
+ "B-MEDIA": 21,
80
+ "B-MYTH": 23,
81
+ "B-ORG": 3,
82
+ "B-PER": 1,
83
+ "B-PLANT": 25,
84
+ "B-TIME": 27,
85
+ "B-VEHI": 29,
86
+ "I-ANIM": 8,
87
+ "I-BIO": 10,
88
+ "I-CEL": 12,
89
+ "I-DIS": 14,
90
+ "I-EVE": 16,
91
+ "I-FOOD": 18,
92
+ "I-INST": 20,
93
+ "I-LOC": 6,
94
+ "I-MEDIA": 22,
95
+ "I-MYTH": 24,
96
+ "I-ORG": 4,
97
+ "I-PER": 2,
98
+ "I-PLANT": 26,
99
+ "I-TIME": 28,
100
+ "I-VEHI": 30,
101
+ "O": 0
102
+ },
103
+ "layer_norm_eps": 1e-12,
104
+ "length_penalty": 1.0,
105
+ "max_length": 20,
106
+ "max_position_embeddings": 512,
107
+ "min_length": 0,
108
+ "model_type": "bert",
109
+ "no_repeat_ngram_size": 0,
110
+ "num_attention_heads": 12,
111
+ "num_beam_groups": 1,
112
+ "num_beams": 1,
113
+ "num_hidden_layers": 12,
114
+ "num_return_sequences": 1,
115
+ "output_attentions": false,
116
+ "output_hidden_states": false,
117
+ "output_scores": false,
118
+ "pad_token_id": 0,
119
+ "pooler_fc_size": 768,
120
+ "pooler_num_attention_heads": 12,
121
+ "pooler_num_fc_layers": 3,
122
+ "pooler_size_per_head": 128,
123
+ "pooler_type": "first_token_transform",
124
+ "position_embedding_type": "absolute",
125
+ "prefix": null,
126
+ "problem_type": null,
127
+ "pruned_heads": {},
128
+ "remove_invalid_values": false,
129
+ "repetition_penalty": 1.0,
130
+ "return_dict": true,
131
+ "return_dict_in_generate": false,
132
+ "sep_token_id": null,
133
+ "suppress_tokens": null,
134
+ "task_specific_params": null,
135
+ "temperature": 1.0,
136
+ "tf_legacy_loss": false,
137
+ "tie_encoder_decoder": false,
138
+ "tie_word_embeddings": true,
139
+ "tokenizer_class": null,
140
+ "top_k": 50,
141
+ "top_p": 1.0,
142
+ "torch_dtype": null,
143
+ "torchscript": false,
144
+ "transformers_version": "4.28.1",
145
+ "type_vocab_size": 2,
146
+ "typical_p": 1.0,
147
+ "use_bfloat16": false,
148
+ "use_cache": true,
149
+ "vocab_size": 119549
150
+ },
151
+ "entity_max_length": 8,
152
+ "id2label": {
153
+ "0": "O",
154
+ "1": "ANIM",
155
+ "2": "BIO",
156
+ "3": "CEL",
157
+ "4": "DIS",
158
+ "5": "EVE",
159
+ "6": "FOOD",
160
+ "7": "INST",
161
+ "8": "LOC",
162
+ "9": "MEDIA",
163
+ "10": "MYTH",
164
+ "11": "ORG",
165
+ "12": "PER",
166
+ "13": "PLANT",
167
+ "14": "TIME",
168
+ "15": "VEHI"
169
+ },
170
+ "id2reduced_id": {
171
+ "0": 0,
172
+ "1": 12,
173
+ "2": 12,
174
+ "3": 11,
175
+ "4": 11,
176
+ "5": 8,
177
+ "6": 8,
178
+ "7": 1,
179
+ "8": 1,
180
+ "9": 2,
181
+ "10": 2,
182
+ "11": 3,
183
+ "12": 3,
184
+ "13": 4,
185
+ "14": 4,
186
+ "15": 5,
187
+ "16": 5,
188
+ "17": 6,
189
+ "18": 6,
190
+ "19": 7,
191
+ "20": 7,
192
+ "21": 9,
193
+ "22": 9,
194
+ "23": 10,
195
+ "24": 10,
196
+ "25": 13,
197
+ "26": 13,
198
+ "27": 14,
199
+ "28": 14,
200
+ "29": 15,
201
+ "30": 15
202
+ },
203
+ "label2id": {
204
+ "ANIM": 1,
205
+ "BIO": 2,
206
+ "CEL": 3,
207
+ "DIS": 4,
208
+ "EVE": 5,
209
+ "FOOD": 6,
210
+ "INST": 7,
211
+ "LOC": 8,
212
+ "MEDIA": 9,
213
+ "MYTH": 10,
214
+ "O": 0,
215
+ "ORG": 11,
216
+ "PER": 12,
217
+ "PLANT": 13,
218
+ "TIME": 14,
219
+ "VEHI": 15
220
+ },
221
+ "marker_max_length": 128,
222
+ "max_next_context": null,
223
+ "max_prev_context": null,
224
+ "model_max_length": 256,
225
+ "model_max_length_default": 512,
226
+ "model_type": "span-marker",
227
+ "span_marker_version": "1.2.5.dev",
228
+ "torch_dtype": "float32",
229
+ "trained_with_document_context": false,
230
+ "transformers_version": "4.28.1",
231
+ "vocab_size": 119549
232
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6f68a5f8e39005e62dbfeeabf29f9ac5b66b6e6cabc599c85e191f83d2cb27e
3
+ size 711588853
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "[CLS]",
5
+ "do_lower_case": false,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 512,
8
+ "pad_token": "[PAD]",
9
+ "sep_token": "[SEP]",
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "BertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff