tomaarsen HF staff commited on
Commit
0f6843b
·
1 Parent(s): b64ad5e

Add training script

Browse files
Files changed (1) hide show
  1. train.py +60 -0
train.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ from span_marker import SpanMarkerModel, Trainer
3
+ from transformers import TrainingArguments
4
+
5
+
6
+ def main() -> None:
7
+ # Load the dataset, ensure "tokens" and "ner_tags" columns, and get a list of labels
8
+ dataset = load_dataset("DFKI-SLT/few-nerd", "supervised")
9
+ dataset = dataset.remove_columns("ner_tags")
10
+ dataset = dataset.rename_column("fine_ner_tags", "ner_tags")
11
+ labels = dataset["train"].features["ner_tags"].feature.names
12
+
13
+ # Initialize a SpanMarker model using a pretrained BERT-style encoder
14
+ model_name = "roberta-large"
15
+ model = SpanMarkerModel.from_pretrained(
16
+ model_name,
17
+ labels=labels,
18
+ # SpanMarker hyperparameters:
19
+ model_max_length=256,
20
+ marker_max_length=128,
21
+ entity_max_length=8,
22
+ )
23
+
24
+ # Prepare the 🤗 transformers training arguments
25
+ args = TrainingArguments(
26
+ output_dir="models/span_marker_roberta_large_fewnerd_fine_super",
27
+ # Training Hyperparameters:
28
+ learning_rate=1e-5,
29
+ per_device_train_batch_size=8,
30
+ per_device_eval_batch_size=8,
31
+ num_train_epochs=3,
32
+ weight_decay=0.01,
33
+ warmup_ratio=0.1,
34
+ bf16=True,
35
+ # Other Training parameters
36
+ logging_first_step=True,
37
+ logging_steps=50,
38
+ evaluation_strategy="steps",
39
+ save_strategy="steps",
40
+ eval_steps=3000,
41
+ dataloader_num_workers=2,
42
+ )
43
+
44
+ # Initialize the trainer using our model, training args & dataset, and train
45
+ trainer = Trainer(
46
+ model=model,
47
+ args=args,
48
+ train_dataset=dataset["train"],
49
+ eval_dataset=dataset["validation"],
50
+ )
51
+ trainer.train()
52
+ trainer.save_model("models/span_marker_roberta_large_fewnerd_fine_super/checkpoint-final")
53
+
54
+ # Compute & save the metrics on the test set
55
+ metrics = trainer.evaluate(dataset["test"], metric_key_prefix="test")
56
+ trainer.save_metrics("test", metrics)
57
+
58
+
59
+ if __name__ == "__main__":
60
+ main()