Add metrics, widget examples & link to train.py
Browse files
README.md
CHANGED
@@ -8,11 +8,59 @@ tags:
|
|
8 |
- ner
|
9 |
- named-entity-recognition
|
10 |
pipeline_tag: token-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# SpanMarker for Named Entity Recognition
|
14 |
|
15 |
-
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the underlying encoder.
|
16 |
|
17 |
## Usage
|
18 |
|
@@ -28,7 +76,7 @@ You can then run inference with this model like so:
|
|
28 |
from span_marker import SpanMarkerModel
|
29 |
|
30 |
# Download from the 🤗 Hub
|
31 |
-
model = SpanMarkerModel.from_pretrained("
|
32 |
# Run inference
|
33 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
34 |
```
|
|
|
8 |
- ner
|
9 |
- named-entity-recognition
|
10 |
pipeline_tag: token-classification
|
11 |
+
widget:
|
12 |
+
- text: "Amelia Earthart voló su Lockheed Vega 5B monomotor a través del Océano Atlántico hasta París ."
|
13 |
+
example_title: "Spanish"
|
14 |
+
- text: "Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris ."
|
15 |
+
example_title: "English"
|
16 |
+
- text: "Amelia Earthart a fait voler son monomoteur Lockheed Vega 5B à travers l'ocean Atlantique jusqu'à Paris ."
|
17 |
+
example_title: "French"
|
18 |
+
- text: "Amelia Earthart flog mit ihrer einmotorigen Lockheed Vega 5B über den Atlantik nach Paris ."
|
19 |
+
example_title: "German"
|
20 |
+
- text: "Амелия Эртхарт перелетела на своем одномоторном самолете Lockheed Vega 5B через Атлантический океан в Париж ."
|
21 |
+
example_title: "Russian"
|
22 |
+
- text: "Amelia Earthart vloog met haar één-motorige Lockheed Vega 5B over de Atlantische Oceaan naar Parijs ."
|
23 |
+
example_title: "Dutch"
|
24 |
+
- text: "Amelia Earthart przeleciała swoim jednosilnikowym samolotem Lockheed Vega 5B przez Ocean Atlantycki do Paryża ."
|
25 |
+
example_title: "Polish"
|
26 |
+
- text: "Amelia Earthart flaug eins hreyfils Lockheed Vega 5B yfir Atlantshafið til Parísar ."
|
27 |
+
example_title: "Icelandic"
|
28 |
+
- text: "Η Amelia Earthart πέταξε το μονοκινητήριο Lockheed Vega 5B της πέρα από τον Ατλαντικό Ωκεανό στο Παρίσι ."
|
29 |
+
example_title: "Greek"
|
30 |
+
model-index:
|
31 |
+
- name: SpanMarker w. xlm-roberta-base on MultiNERD by Tom Aarsen
|
32 |
+
results:
|
33 |
+
- task:
|
34 |
+
type: token-classification
|
35 |
+
name: Named Entity Recognition
|
36 |
+
dataset:
|
37 |
+
type: Babelscape/multinerd
|
38 |
+
name: MultiNERD
|
39 |
+
split: test
|
40 |
+
revision: 2814b78e7af4b5a1f1886fe7ad49632de4d9dd25
|
41 |
+
metrics:
|
42 |
+
- type: f1
|
43 |
+
value: 0.91314
|
44 |
+
name: F1
|
45 |
+
- type: precision
|
46 |
+
value: 0.91994
|
47 |
+
name: Precision
|
48 |
+
- type: recall
|
49 |
+
value: 0.90643
|
50 |
+
name: Recall
|
51 |
+
datasets:
|
52 |
+
- Babelscape/multinerd
|
53 |
+
language:
|
54 |
+
- multilingual
|
55 |
+
metrics:
|
56 |
+
- f1
|
57 |
+
- recall
|
58 |
+
- precision
|
59 |
---
|
60 |
|
61 |
# SpanMarker for Named Entity Recognition
|
62 |
|
63 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the underlying encoder. See [train.py](train.py) for the training script.
|
64 |
|
65 |
## Usage
|
66 |
|
|
|
76 |
from span_marker import SpanMarkerModel
|
77 |
|
78 |
# Download from the 🤗 Hub
|
79 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-base-multinerd")
|
80 |
# Run inference
|
81 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
82 |
```
|