File size: 76,242 Bytes
69465e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
---

language:
- en
- multilingual
- ar
- bg
- ca
- cs
- da
- de
- el
- es
- et
- fa
- fi
- fr
- gl
- gu
- he
- hi
- hr
- hu
- hy
- id
- it
- ja
- ka
- ko
- ku
- lt
- lv
- mk
- mn
- mr
- ms
- my
- nb
- nl
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- th
- tr
- uk
- ur
- vi
- zh
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MSELoss
base_model: FacebookAI/xlm-roberta-base
metrics:
- negative_mse
- src2trg_accuracy
- trg2src_accuracy
- mean_accuracy
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Grazie tante.
  sentences:
  - Grazie infinite.
  - Non c'è un solo architetto diplomato in tutta la Contea.
  - Le aziende non credevano che fosse loro responsabilità.
- source_sentence: Avance rapide.
  sentences:
  - Très bien.
  - Donc, je voulais faire quelque chose de spécial aujourd'hui.
  - Et ils ne tiennent pas non plus compte des civils qui souffrent de façon plus
    générale.
- source_sentence: E' importante.
  sentences:
  - E' una materia fondamentale.
  - Sono qui oggi per mostrare le mie fotografie dei Lakota.
  - Non ero seguito da un corteo di macchine.
- source_sentence: Müfettişler…
  sentences:
  - İşçi sınıfına dair birşey.
  - Antlaşmaya göre, o topraklar bağımsız bir ulustur.
  - Son derece düz ve bataklık bir coğrafya.
- source_sentence: Wir sind eins.
  sentences:
  - Das versuchen wir zu bieten.
  - Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.
  - Hinter mir war gar keine Autokolonne.
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 23.27766676567869
  energy_consumed: 0.05988563672345058
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.179
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
  results:
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en ar
      type: en-ar
    metrics:
    - type: negative_mse
      value: -20.395545661449432
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en ar
      type: en-ar
    metrics:
    - type: src2trg_accuracy
      value: 0.7603222557905337
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.7824773413897281
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.7713997985901309
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en ar test
      type: sts17-en-ar-test
    metrics:
    - type: pearson_cosine
      value: 0.40984231242712876
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4425400227662121
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.4068582195810505
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.4194184278683204
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.38014538983821944
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.38651157412220366
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.4077636003696869
      name: Pearson Dot
    - type: spearman_dot
      value: 0.37682818098716137
      name: Spearman Dot
    - type: pearson_max
      value: 0.40984231242712876
      name: Pearson Max
    - type: spearman_max
      value: 0.4425400227662121
      name: Spearman Max
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en fr
      type: en-fr
    metrics:
    - type: negative_mse
      value: -19.62321847677231
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en fr
      type: en-fr
    metrics:
    - type: src2trg_accuracy
      value: 0.8981854838709677
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.8901209677419355
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.8941532258064516
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 fr en test
      type: sts17-fr-en-test
    metrics:
    - type: pearson_cosine
      value: 0.5017606394120642
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5333594401322842
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.4461108010622129
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.45470883061015244
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.44313058261278737
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.44806261424208443
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.40165874540768454
      name: Pearson Dot
    - type: spearman_dot
      value: 0.41339619568003433
      name: Spearman Dot
    - type: pearson_max
      value: 0.5017606394120642
      name: Pearson Max
    - type: spearman_max
      value: 0.5333594401322842
      name: Spearman Max
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en de
      type: en-de
    metrics:
    - type: negative_mse
      value: -19.727922976017
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en de
      type: en-de
    metrics:
    - type: src2trg_accuracy
      value: 0.8920282542885973
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.8910191725529768
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.8915237134207871
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en de test
      type: sts17-en-de-test
    metrics:
    - type: pearson_cosine
      value: 0.5262798164154752
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5618005565496922
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.5084907192868734
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.5218456102379673
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.5055278909013912
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.5206420646365548
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.3742195121194434
      name: Pearson Dot
    - type: spearman_dot
      value: 0.3691237073066472
      name: Spearman Dot
    - type: pearson_max
      value: 0.5262798164154752
      name: Pearson Max
    - type: spearman_max
      value: 0.5618005565496922
      name: Spearman Max
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en es
      type: en-es
    metrics:
    - type: negative_mse
      value: -19.472387433052063
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en es
      type: en-es
    metrics:
    - type: src2trg_accuracy
      value: 0.9434343434343434
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.9464646464646465
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.944949494949495
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 es en test
      type: sts17-es-en-test
    metrics:
    - type: pearson_cosine
      value: 0.4944989376773328
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.502096516024397
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.44447965250345656
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.428444032581959
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.43569887867301704
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.4169602915053127
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.3751122541083453
      name: Pearson Dot
    - type: spearman_dot
      value: 0.37961391381473436
      name: Spearman Dot
    - type: pearson_max
      value: 0.4944989376773328
      name: Pearson Max
    - type: spearman_max
      value: 0.502096516024397
      name: Spearman Max
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en tr
      type: en-tr
    metrics:
    - type: negative_mse
      value: -20.754697918891907
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en tr
      type: en-tr
    metrics:
    - type: src2trg_accuracy
      value: 0.743202416918429
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.743202416918429
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.743202416918429
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 en tr test
      type: sts17-en-tr-test
    metrics:
    - type: pearson_cosine
      value: 0.5544917743538167
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.581923120433332
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.5103770986779784
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.5087986920849596
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.5045523005860614
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.5053157708914061
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.47262046401401747
      name: Pearson Dot
    - type: spearman_dot
      value: 0.4297595645819756
      name: Spearman Dot
    - type: pearson_max
      value: 0.5544917743538167
      name: Pearson Max
    - type: spearman_max
      value: 0.581923120433332
      name: Spearman Max
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: en it
      type: en-it
    metrics:
    - type: negative_mse
      value: -19.76993829011917
      name: Negative Mse
  - task:
      type: translation
      name: Translation
    dataset:
      name: en it
      type: en-it
    metrics:
    - type: src2trg_accuracy
      value: 0.878147029204431
      name: Src2Trg Accuracy
    - type: trg2src_accuracy
      value: 0.8831822759315207
      name: Trg2Src Accuracy
    - type: mean_accuracy
      value: 0.8806646525679758
      name: Mean Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts17 it en test
      type: sts17-it-en-test
    metrics:
    - type: pearson_cosine
      value: 0.506365733914274
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5250284136808592
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.45167598168533407
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.46227952068355316
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.4423426674780287
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.45072801992723094
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.4201989776020174
      name: Pearson Dot
    - type: spearman_dot
      value: 0.42253906764732746
      name: Spearman Dot
    - type: pearson_max
      value: 0.506365733914274
      name: Pearson Max
    - type: spearman_max
      value: 0.5250284136808592
      name: Spearman Max
---


# SentenceTransformer based on FacebookAI/xlm-roberta-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) and [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
    - [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
    - [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
    - [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
    - [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
    - [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
- **Languages:** en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/xlm-roberta-base-multilingual-en-ar-fr-de-es-tr-it")

# Run inference

sentences = [

    'Wir sind eins.',

    'Das versuchen wir zu bieten.',

    'Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Knowledge Distillation
* Dataset: `en-ar`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)

| Metric           | Value        |
|:-----------------|:-------------|
| **negative_mse** | **-20.3955** |



#### Translation

* Dataset: `en-ar`

* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)



| Metric            | Value      |

|:------------------|:-----------|

| src2trg_accuracy  | 0.7603     |

| trg2src_accuracy  | 0.7825     |

| **mean_accuracy** | **0.7714** |

#### Semantic Similarity
* Dataset: `sts17-en-ar-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.4098     |

| spearman_cosine    | 0.4425     |
| pearson_manhattan  | 0.4069     |

| spearman_manhattan | 0.4194     |
| pearson_euclidean  | 0.3801     |

| spearman_euclidean | 0.3865     |
| pearson_dot        | 0.4078     |

| spearman_dot       | 0.3768     |
| pearson_max        | 0.4098     |

| **spearman_max**   | **0.4425** |



#### Knowledge Distillation

* Dataset: `en-fr`

* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)



| Metric           | Value        |

|:-----------------|:-------------|

| **negative_mse** | **-19.6232** |



#### Translation

* Dataset: `en-fr`

* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)



| Metric            | Value      |

|:------------------|:-----------|

| src2trg_accuracy  | 0.8982     |
| trg2src_accuracy  | 0.8901     |

| **mean_accuracy** | **0.8942** |



#### Semantic Similarity

* Dataset: `sts17-fr-en-test`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric             | Value      |

|:-------------------|:-----------|

| pearson_cosine     | 0.5018     |
| spearman_cosine    | 0.5334     |

| pearson_manhattan  | 0.4461     |
| spearman_manhattan | 0.4547     |

| pearson_euclidean  | 0.4431     |
| spearman_euclidean | 0.4481     |

| pearson_dot        | 0.4017     |
| spearman_dot       | 0.4134     |

| pearson_max        | 0.5018     |
| **spearman_max**   | **0.5334** |



#### Knowledge Distillation

* Dataset: `en-de`

* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)



| Metric           | Value        |

|:-----------------|:-------------|

| **negative_mse** | **-19.7279** |

#### Translation
* Dataset: `en-de`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)

| Metric            | Value      |
|:------------------|:-----------|
| src2trg_accuracy  | 0.892      |

| trg2src_accuracy  | 0.891      |
| **mean_accuracy** | **0.8915** |



#### Semantic Similarity

* Dataset: `sts17-en-de-test`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric             | Value      |

|:-------------------|:-----------|

| pearson_cosine     | 0.5263     |

| spearman_cosine    | 0.5618     |

| pearson_manhattan  | 0.5085     |

| spearman_manhattan | 0.5218     |

| pearson_euclidean  | 0.5055     |

| spearman_euclidean | 0.5206     |

| pearson_dot        | 0.3742     |

| spearman_dot       | 0.3691     |

| pearson_max        | 0.5263     |

| **spearman_max**   | **0.5618** |



#### Knowledge Distillation

* Dataset: `en-es`

* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)



| Metric           | Value        |

|:-----------------|:-------------|

| **negative_mse** | **-19.4724** |



#### Translation

* Dataset: `en-es`

* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)



| Metric            | Value      |

|:------------------|:-----------|

| src2trg_accuracy  | 0.9434     |
| trg2src_accuracy  | 0.9465     |

| **mean_accuracy** | **0.9449** |



#### Semantic Similarity

* Dataset: `sts17-es-en-test`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric             | Value      |

|:-------------------|:-----------|

| pearson_cosine     | 0.4945     |
| spearman_cosine    | 0.5021     |

| pearson_manhattan  | 0.4445     |
| spearman_manhattan | 0.4284     |

| pearson_euclidean  | 0.4357     |
| spearman_euclidean | 0.417      |

| pearson_dot        | 0.3751     |
| spearman_dot       | 0.3796     |

| pearson_max        | 0.4945     |
| **spearman_max**   | **0.5021** |



#### Knowledge Distillation

* Dataset: `en-tr`

* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)



| Metric           | Value        |

|:-----------------|:-------------|

| **negative_mse** | **-20.7547** |

#### Translation
* Dataset: `en-tr`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)

| Metric            | Value      |
|:------------------|:-----------|
| src2trg_accuracy  | 0.7432     |

| trg2src_accuracy  | 0.7432     |
| **mean_accuracy** | **0.7432** |



#### Semantic Similarity

* Dataset: `sts17-en-tr-test`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric             | Value      |

|:-------------------|:-----------|

| pearson_cosine     | 0.5545     |

| spearman_cosine    | 0.5819     |

| pearson_manhattan  | 0.5104     |

| spearman_manhattan | 0.5088     |

| pearson_euclidean  | 0.5046     |

| spearman_euclidean | 0.5053     |

| pearson_dot        | 0.4726     |

| spearman_dot       | 0.4298     |

| pearson_max        | 0.5545     |

| **spearman_max**   | **0.5819** |



#### Knowledge Distillation

* Dataset: `en-it`

* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)



| Metric           | Value        |

|:-----------------|:-------------|

| **negative_mse** | **-19.7699** |



#### Translation

* Dataset: `en-it`

* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)



| Metric            | Value      |

|:------------------|:-----------|

| src2trg_accuracy  | 0.8781     |
| trg2src_accuracy  | 0.8832     |

| **mean_accuracy** | **0.8807** |



#### Semantic Similarity

* Dataset: `sts17-it-en-test`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric             | Value     |

|:-------------------|:----------|

| pearson_cosine     | 0.5064    |
| spearman_cosine    | 0.525     |

| pearson_manhattan  | 0.4517    |
| spearman_manhattan | 0.4623    |

| pearson_euclidean  | 0.4423    |
| spearman_euclidean | 0.4507    |

| pearson_dot        | 0.4202    |
| spearman_dot       | 0.4225    |

| pearson_max        | 0.5064    |
| **spearman_max**   | **0.525** |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Datasets



#### en-ar



* Dataset: [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 5,000 training samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                       | label                                |

  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                            | list                                 |

  | details | <ul><li>min: 4 tokens</li><li>mean: 27.3 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                                                             | label                                                                                                                       |

  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|

  | <code>حسناً ان ما نقوم به اليوم .. هو ان نجبر الطلاب لتعلم الرياضيات</code>                                                                                             | <code>[0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...]</code>    |

  | <code>انها المادة الاهم ..</code>                                                                                                                                       | <code>[0.6257511377334595, -0.1750679910182953, -0.5734405517578125, 0.11480475962162018, 1.1682192087173462, ...]</code>   |

  | <code>انا لا انفي لدقيقة واحدة ان الذين يهتمون بالحسابات اليدوية والذين هوايتهم القيام بذلك .. او القيام بالطرق التقليدية في اي مجال ان يقوموا بذلك كما يريدون .</code> | <code>[-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



#### en-fr



* Dataset: [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 5,000 training samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                        | label                                |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                             | list                                 |

  | details | <ul><li>min: 3 tokens</li><li>mean: 30.18 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                                                                                                         | label                                                                                                                        |

  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|

  | <code>Je ne crois pas que ce soit justifié.</code>                                                                                                                                                                  | <code>[-0.361753910779953, 0.7323777079582214, 0.6518164277076721, -0.8461216688156128, -0.007496988866478205, ...]</code>   |

  | <code>Je fais cette distinction entre ce qu'on force les gens à faire et les matières générales, et la matière que quelqu'un va apprendre parce que ça lui plait et peut-être même exceller dans ce domaine.</code> | <code>[0.3047865629196167, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...]</code>      |

  | <code>Quels sont les problèmes en relation avec ça?</code>                                                                                                                                                          | <code>[0.2123892903327942, -0.09616081416606903, -0.41965243220329285, -0.5469444394111633, -0.6056491136550903, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



#### en-de



* Dataset: [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 5,000 training samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                        | label                                |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                             | list                                 |

  | details | <ul><li>min: 4 tokens</li><li>mean: 27.04 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                                         | label                                                                                                                        |

  |:----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|

  | <code>Ich denke, dass es sich aus diesem Grund lohnt, den Leuten das Rechnen von Hand beizubringen.</code>                                          | <code>[0.0960279330611229, 0.7833179831504822, -0.09527698159217834, 0.8104371428489685, 0.7545774579048157, ...]</code>     |

  | <code>Außerdem gibt es ein paar bestimmte konzeptionelle Dinge, die das Rechnen per Hand rechtfertigen, aber ich glaube es sind sehr wenige.</code> | <code>[-0.5939837098121643, 0.9714100956916809, 0.6800686717033386, -0.21585524082183838, -0.7509503364562988, ...]</code>   |

  | <code>Eine Sache, die ich mich oft frage, ist Altgriechisch, und wie das zusammengehört.</code>                                                     | <code>[-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



#### en-es



* Dataset: [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 5,000 training samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                        | label                                |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                             | list                                 |

  | details | <ul><li>min: 4 tokens</li><li>mean: 25.42 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                              | label                                                                                                                        |

  |:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|

  | <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.5939835906028748, 0.9714106917381287, 0.6800685524940491, -0.2158554196357727, -0.7509507536888123, ...]</code>    |

  | <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code>                                                  | <code>[-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...]</code> |

  | <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code>                                            | <code>[0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...]</code>     |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



#### en-tr



* Dataset: [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 5,000 training samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                        | label                                |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                             | list                                 |

  | details | <ul><li>min: 4 tokens</li><li>mean: 24.72 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                                                                               | label                                                                                                                        |

  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|

  | <code>Eğer insanlar elle hesaba ilgililerse ya da öğrenmek için özel amaçları varsa konu ne kadar acayip olursa olsun bunu öğrenmeliler, engellemeyi bir an için bile önermiyorum.</code> | <code>[-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...]</code>  |

  | <code>İnsanların kendi ilgi alanlarını takip etmeleri, kesinlikle doğru bir şeydir.</code>                                                                                                | <code>[0.2061387449502945, 0.5284574031829834, 0.3577779233455658, 0.28818392753601074, 0.17228049039840698, ...]</code>     |

  | <code>Ben bir biçimde Antik Yunan hakkında ilgiliyimdir. ancak tüm nüfusu Antik Yunan gibi bir konu hakkında bilgi edinmeye zorlamamalıyız.</code>                                        | <code>[0.12050342559814453, 0.15652479231357574, 0.48636534810066223, -0.13693244755268097, 0.42764803767204285, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



#### en-it



* Dataset: [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 5,000 training samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                        | label                                |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                             | list                                 |

  | details | <ul><li>min: 3 tokens</li><li>mean: 26.41 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                                                                                                                               | label                                                                                                                       |

  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|

  | <code>Non credo che sia giustificato.</code>                                                                                                                                                                                              | <code>[-0.36175352334976196, 0.7323781251907349, 0.651816189289093, -0.8461223840713501, -0.007496151141822338, ...]</code> |

  | <code>Perciò faccio distinzione tra quello che stiamo facendo fare alle persone, le materie che si ritengono principali, e le materie che le persone potrebbero seguire per loro interesse o forse a volte anche incitate a farlo.</code> | <code>[0.3047865927219391, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...]</code>     |

  | <code>Ma che argomenti porta la gente su questi temi?</code>                                                                                                                                                                              | <code>[0.2123885154724121, -0.09616123884916306, -0.4196523427963257, -0.5469440817832947, -0.6056501865386963, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



### Evaluation Datasets



#### en-ar



* Dataset: [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 993 evaluation samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                        | label                                |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                             | list                                 |

  | details | <ul><li>min: 3 tokens</li><li>mean: 28.03 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                 | label                                                                                                                        |

  |:------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|

  | <code>شكرا جزيلا كريس.</code>                                                                               | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code>   |

  | <code>انه فعلا شرف عظيم لي ان أصعد المنصة للمرة الثانية. أنا في غاية الامتنان.</code>                       | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code>    |

  | <code>لقد بهرت فعلا بهذا المؤتمر, وأريد أن أشكركم جميعا على تعليقاتكم الطيبة على ما قلته تلك الليلة.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



#### en-fr



* Dataset: [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 992 evaluation samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                        | label                                |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                             | list                                 |

  | details | <ul><li>min: 4 tokens</li><li>mean: 30.72 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                                                                      | label                                                                                                                        |

  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|

  | <code>Merci beaucoup, Chris.</code>                                                                                                                                              | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code>   |

  | <code>C'est vraiment un honneur de pouvoir venir sur cette scène une deuxième fois. Je suis très reconnaissant.</code>                                                           | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code>    |

  | <code>J'ai été très impressionné par cette conférence, et je tiens à vous remercier tous pour vos nombreux et sympathiques commentaires sur ce que j'ai dit l'autre soir.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



#### en-de



* Dataset: [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 991 evaluation samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                        | label                                |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                             | list                                 |

  | details | <ul><li>min: 4 tokens</li><li>mean: 27.71 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                                                | label                                                                                                                        |

  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|

  | <code>Vielen Dank, Chris.</code>                                                                                                                           | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code>   |

  | <code>Es ist mir wirklich eine Ehre, zweimal auf dieser Bühne stehen zu dürfen. Tausend Dank dafür.</code>                                                 | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code>    |

  | <code>Ich bin wirklich begeistert von dieser Konferenz, und ich danke Ihnen allen für die vielen netten Kommentare zu meiner Rede vorgestern Abend.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



#### en-es



* Dataset: [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 990 evaluation samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                        | label                                |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                             | list                                 |

  | details | <ul><li>min: 4 tokens</li><li>mean: 26.47 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                                                       | label                                                                                                                        |

  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|

  | <code>Muchas gracias Chris.</code>                                                                                                                                | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code>   |

  | <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code>                        | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code>    |

  | <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



#### en-tr



* Dataset: [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 993 evaluation samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                       | label                                |

  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                            | list                                 |

  | details | <ul><li>min: 4 tokens</li><li>mean: 25.4 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                 | label                                                                                                                        |

  |:----------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|

  | <code>Çok teşekkür ederim Chris.</code>                                                                                     | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code>   |

  | <code>Bu sahnede ikinci kez yer alma fırsatına sahip olmak gerçekten büyük bir onur. Çok minnettarım.</code>                | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code>    |

  | <code>Bu konferansta çok mutlu oldum, ve anlattıklarımla ilgili güzel yorumlarınız için sizlere çok teşekkür ederim.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



#### en-it



* Dataset: [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)

* Size: 993 evaluation samples

* Columns: <code>non_english</code> and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | non_english                                                                        | label                                |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|

  | type    | string                                                                             | list                                 |

  | details | <ul><li>min: 4 tokens</li><li>mean: 27.94 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |

* Samples:

  | non_english                                                                                                                                             | label                                                                                                                        |

  |:--------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|

  | <code>Grazie mille, Chris.</code>                                                                                                                       | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code>   |

  | <code>E’ veramente un grande onore venire su questo palco due volte. Vi sono estremamente grato.</code>                                                 | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code>    |

  | <code>Sono impressionato da questa conferenza, e voglio ringraziare tutti voi per i tanti, lusinghieri commenti, anche perché... Ne ho bisogno!!</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |

* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 64

- `per_device_eval_batch_size`: 64

- `learning_rate`: 2e-05

- `num_train_epochs`: 5

- `warmup_ratio`: 0.1

- `fp16`: True



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: False

- `per_device_train_batch_size`: 64

- `per_device_eval_batch_size`: 64

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 5

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: False

- `fp16`: True

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: None

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

| Epoch  | Step | Training Loss | en-ar loss | en-it loss | en-de loss | en-fr loss | en-es loss | en-tr loss | en-ar_mean_accuracy | en-ar_negative_mse | en-de_mean_accuracy | en-de_negative_mse | en-es_mean_accuracy | en-es_negative_mse | en-fr_mean_accuracy | en-fr_negative_mse | en-it_mean_accuracy | en-it_negative_mse | en-tr_mean_accuracy | en-tr_negative_mse | sts17-en-ar-test_spearman_max | sts17-en-de-test_spearman_max | sts17-en-tr-test_spearman_max | sts17-es-en-test_spearman_max | sts17-fr-en-test_spearman_max | sts17-it-en-test_spearman_max |

|:------:|:----:|:-------------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|

| 0.2110 | 100  | 0.5581        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 0.4219 | 200  | 0.3071        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 0.6329 | 300  | 0.2675        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 0.8439 | 400  | 0.2606        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 1.0549 | 500  | 0.2589        | 0.2519     | 0.2498     | 0.2511     | 0.2488     | 0.2503     | 0.2512     | 0.1254              | -25.1903           | 0.2523              | -25.1089           | 0.2591              | -25.0276           | 0.2409              | -24.8803           | 0.2180              | -24.9768           | 0.1158              | -25.1219           | 0.0308                        | 0.1281                        | 0.1610                        | 0.1465                        | 0.0552                        | 0.0518                        |

| 1.2658 | 600  | 0.2504        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 1.4768 | 700  | 0.2427        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 1.6878 | 800  | 0.2337        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 1.8987 | 900  | 0.2246        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 2.1097 | 1000 | 0.2197        | 0.2202     | 0.2157     | 0.2151     | 0.2147     | 0.2139     | 0.2218     | 0.5841              | -22.0204           | 0.8012              | -21.5087           | 0.8495              | -21.3935           | 0.7959              | -21.4660           | 0.7815              | -21.5699           | 0.6007              | -22.1778           | 0.3346                        | 0.4013                        | 0.4727                        | 0.3353                        | 0.3827                        | 0.3292                        |

| 2.3207 | 1100 | 0.2163        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 2.5316 | 1200 | 0.2123        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 2.7426 | 1300 | 0.2069        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 2.9536 | 1400 | 0.2048        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 3.1646 | 1500 | 0.2009        | 0.2086     | 0.2029     | 0.2022     | 0.2012     | 0.2002     | 0.2111     | 0.7367              | -20.8567           | 0.8739              | -20.2247           | 0.9303              | -20.0215           | 0.8755              | -20.1213           | 0.8600              | -20.2900           | 0.7165              | -21.1119           | 0.4087                        | 0.5473                        | 0.5551                        | 0.4724                        | 0.4882                        | 0.4690                        |

| 3.3755 | 1600 | 0.2019        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 3.5865 | 1700 | 0.1989        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 3.7975 | 1800 | 0.196         | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 4.0084 | 1900 | 0.1943        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 4.2194 | 2000 | 0.194         | 0.2040     | 0.1977     | 0.1973     | 0.1962     | 0.1947     | 0.2075     | 0.7714              | -20.3955           | 0.8915              | -19.7279           | 0.9449              | -19.4724           | 0.8942              | -19.6232           | 0.8807              | -19.7699           | 0.7432              | -20.7547           | 0.4425                        | 0.5618                        | 0.5819                        | 0.5021                        | 0.5334                        | 0.5250                        |

| 4.4304 | 2100 | 0.1951        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 4.6414 | 2200 | 0.1928        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |

| 4.8523 | 2300 | 0.1909        | -          | -          | -          | -          | -          | -          | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                   | -                  | -                             | -                             | -                             | -                             | -                             | -                             |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.060 kWh

- **Carbon Emitted**: 0.023 kg of CO2

- **Hours Used**: 0.179 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.0.0.dev0

- Transformers: 4.41.0.dev0

- PyTorch: 2.3.0+cu121

- Accelerate: 0.26.1

- Datasets: 2.18.0

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MSELoss

```bibtex

@inproceedings{reimers-2020-multilingual-sentence-bert,

    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2020",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/2004.09813",

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->