Upload RavenForCausalLM
Browse files- config.json +0 -3
- generation_config.json +0 -4
- raven_modeling_minimal.py +489 -36
config.json
CHANGED
@@ -11,9 +11,7 @@
|
|
11 |
"bias": false,
|
12 |
"block_class_name": "SandwichBlock",
|
13 |
"block_size": 4096,
|
14 |
-
"bos_token_id": 65504,
|
15 |
"effective_expected_depth": 132,
|
16 |
-
"eos_token_id": 65505,
|
17 |
"head_dim": 96,
|
18 |
"init_orthogonal": false,
|
19 |
"init_strategy": "takase",
|
@@ -39,7 +37,6 @@
|
|
39 |
"norm_class_name": "RMSNorm_llama",
|
40 |
"norm_eps": 1e-06,
|
41 |
"num_key_value_heads": 55,
|
42 |
-
"pad_token_id": 65509,
|
43 |
"padded_vocab_size": 65536,
|
44 |
"padding_multiple": 4096,
|
45 |
"qk_bias": true,
|
|
|
11 |
"bias": false,
|
12 |
"block_class_name": "SandwichBlock",
|
13 |
"block_size": 4096,
|
|
|
14 |
"effective_expected_depth": 132,
|
|
|
15 |
"head_dim": 96,
|
16 |
"init_orthogonal": false,
|
17 |
"init_strategy": "takase",
|
|
|
37 |
"norm_class_name": "RMSNorm_llama",
|
38 |
"norm_eps": 1e-06,
|
39 |
"num_key_value_heads": 55,
|
|
|
40 |
"padded_vocab_size": 65536,
|
41 |
"padding_multiple": 4096,
|
42 |
"qk_bias": true,
|
generation_config.json
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
-
"bos_token_id": 65504,
|
4 |
-
"eos_token_id": 65505,
|
5 |
-
"pad_token_id": 65509,
|
6 |
-
"use_cache": true,
|
7 |
"transformers_version": "4.44.2"
|
8 |
}
|
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
|
|
|
|
|
|
|
|
3 |
"transformers_version": "4.44.2"
|
4 |
}
|
raven_modeling_minimal.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
-
"""Minimal modeling.py file for HF compatibility and funny zero-shot experiments.
|
2 |
|
3 |
import torch
|
4 |
import math
|
5 |
|
6 |
from torch import Tensor
|
7 |
from dataclasses import dataclass
|
8 |
-
from typing import Optional, Union
|
9 |
|
10 |
from .raven_config_minimal import RavenConfig
|
11 |
from transformers.cache_utils import Cache, DynamicCache
|
@@ -13,6 +13,10 @@ from transformers.cache_utils import Cache, DynamicCache
|
|
13 |
###################### Huggingface Glue code I ##################################################################
|
14 |
from transformers import PreTrainedModel
|
15 |
from transformers.utils import ModelOutput
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
class RavenPreTrainedModel(PreTrainedModel):
|
@@ -39,7 +43,7 @@ class CausalLMOutputRecurrentLatents(ModelOutput):
|
|
39 |
past_key_values: Optional[Cache] = None
|
40 |
latent_states: Optional[torch.Tensor] = None
|
41 |
hidden_states: Optional[torch.Tensor] = None
|
42 |
-
attention_maps: Optional[
|
43 |
stats: Optional[dict] = None
|
44 |
|
45 |
|
@@ -66,7 +70,7 @@ class RMSNorm(torch.nn.Module):
|
|
66 |
|
67 |
|
68 |
class HuginnDynamicCache(DynamicCache):
|
69 |
-
def __init__(self) -> None:
|
70 |
super().__init__()
|
71 |
self._seen_tokens = 0
|
72 |
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
|
@@ -75,14 +79,24 @@ class HuginnDynamicCache(DynamicCache):
|
|
75 |
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
|
76 |
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
|
77 |
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
|
|
|
78 |
|
79 |
def update(
|
80 |
self,
|
81 |
key_states: torch.Tensor,
|
82 |
value_states: torch.Tensor,
|
83 |
step_idx: int,
|
84 |
-
lookup_strategy: str =
|
85 |
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# Init
|
87 |
if step_idx not in self.key_cache:
|
88 |
self.key_cache[step_idx] = {}
|
@@ -92,31 +106,49 @@ class HuginnDynamicCache(DynamicCache):
|
|
92 |
self._seen_tokens += key_states.shape[-2]
|
93 |
# Add entries to cache
|
94 |
for idx, entry in enumerate(key_states.unbind(dim=-2)):
|
95 |
-
|
|
|
|
|
96 |
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
97 |
for idx, entry in enumerate(value_states.unbind(dim=-2)):
|
98 |
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
|
99 |
|
100 |
# Materialize past state based on lookup strategy:
|
101 |
-
if len(self.key_cache[step_idx]) == self._seen_tokens:
|
102 |
# All entries are present, materialize cache as normal
|
103 |
return (
|
104 |
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
|
105 |
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
|
106 |
)
|
107 |
else: # some entries where not previously computed
|
108 |
-
if lookup_strategy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
latest_keys = []
|
110 |
latest_values = []
|
111 |
for token_pos in range(self._seen_tokens):
|
112 |
-
#
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
114 |
if max_step is None:
|
115 |
raise ValueError(f"No cache entry found for token position {token_pos}")
|
116 |
latest_keys.append(self.key_cache[max_step][token_pos])
|
117 |
latest_values.append(self.value_cache[max_step][token_pos])
|
118 |
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
119 |
-
elif lookup_strategy
|
120 |
existing_keys = []
|
121 |
existing_values = []
|
122 |
for token_pos in range(self._seen_tokens):
|
@@ -124,15 +156,22 @@ class HuginnDynamicCache(DynamicCache):
|
|
124 |
existing_keys.append(self.key_cache[step_idx][token_pos])
|
125 |
existing_values.append(self.value_cache[step_idx][token_pos])
|
126 |
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
|
127 |
-
elif lookup_strategy
|
128 |
rand_keys = []
|
129 |
rand_values = []
|
130 |
for token_pos in range(self._seen_tokens):
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
|
137 |
else:
|
138 |
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
@@ -146,6 +185,18 @@ class HuginnDynamicCache(DynamicCache):
|
|
146 |
def get_seq_length(self, step_idx: int = 0) -> int:
|
147 |
return self._seen_tokens
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
class CausalSelfAttention(torch.nn.Module):
|
151 |
def __init__(self, config: RavenConfig) -> None:
|
@@ -169,7 +220,8 @@ class CausalSelfAttention(torch.nn.Module):
|
|
169 |
step_idx: int,
|
170 |
mask: Optional[Tensor] = None,
|
171 |
past_key_values: Optional[Cache] = None,
|
172 |
-
|
|
|
173 |
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
|
174 |
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
|
175 |
q = q.view(B, S, self.n_head, self.head_dim)
|
@@ -189,11 +241,28 @@ class CausalSelfAttention(torch.nn.Module):
|
|
189 |
if past_key_values is not None:
|
190 |
k, v = past_key_values.update(k, v, step_idx)
|
191 |
|
192 |
-
|
193 |
-
q, k, v, attn_mask=mask
|
194 |
-
|
|
|
|
|
|
|
195 |
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
|
196 |
-
return self.proj(y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
|
199 |
class GatedMLP(torch.nn.Module):
|
@@ -232,10 +301,12 @@ class SandwichBlock(torch.nn.Module):
|
|
232 |
step_idx: int,
|
233 |
mask: Optional[Tensor] = None,
|
234 |
past_key_values: Optional[Cache] = None,
|
235 |
-
|
236 |
-
|
|
|
|
|
237 |
x = self.norm_4(self.mlp(self.norm_3(x)) + x)
|
238 |
-
return x
|
239 |
|
240 |
|
241 |
class RavenForCausalLM(RavenPreTrainedModel):
|
@@ -318,13 +389,18 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
318 |
|
319 |
if use_cache and past_key_values is None:
|
320 |
past_key_values = HuginnDynamicCache()
|
|
|
|
|
321 |
|
322 |
# Non-recurrent prelude
|
323 |
for block_idx, block in enumerate(self.transformer.prelude):
|
324 |
-
input_embeds = block(
|
|
|
|
|
|
|
325 |
|
326 |
# Main recurrence
|
327 |
-
x, num_steps_no_grad, num_steps_with_grad, xk = self.iterate_forward(
|
328 |
input_embeds, # type: ignore
|
329 |
input_states,
|
330 |
freqs_cis,
|
@@ -332,12 +408,14 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
332 |
attention_mask,
|
333 |
past_key_values,
|
334 |
num_steps,
|
|
|
335 |
)
|
336 |
latent_states = x.clone().detach()
|
337 |
|
338 |
# Coda layers
|
339 |
for block_idx, block in enumerate(self.transformer.coda, start=1):
|
340 |
-
x = block(x, freqs_cis, -block_idx, attention_mask, past_key_values)
|
|
|
341 |
x = self.transformer.ln_f(x)
|
342 |
|
343 |
# Prediction head, assuming labels really are labels and not equal to input_ids
|
@@ -356,7 +434,7 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
356 |
past_key_values=past_key_values,
|
357 |
hidden_states=x if output_details["return_head"] else None,
|
358 |
latent_states=latent_states if output_details["return_latents"] else None,
|
359 |
-
attention_maps=
|
360 |
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
|
361 |
if output_details["return_stats"]
|
362 |
else None,
|
@@ -372,9 +450,9 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
372 |
mask,
|
373 |
past_key_values: Optional[Cache] = None,
|
374 |
num_steps: Optional[torch.Tensor] = None,
|
|
|
375 |
):
|
376 |
x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
|
377 |
-
|
378 |
if num_steps is None:
|
379 |
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
|
380 |
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
|
@@ -389,20 +467,123 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
389 |
# and all parameters are always used
|
390 |
for step in range(num_steps_no_grad):
|
391 |
xk = x
|
392 |
-
x, block_idx = self.core_block_forward(
|
|
|
|
|
393 |
|
394 |
for step in range(num_steps_with_grad):
|
395 |
xk = x
|
396 |
-
x, block_idx = self.core_block_forward(
|
397 |
-
|
|
|
|
|
398 |
|
399 |
def core_block_forward(
|
400 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
):
|
402 |
x = self.transformer.adapter(torch.cat([x, input_embeds], dim=-1))
|
403 |
for idx, block in enumerate(self.transformer.core_block, start=1):
|
404 |
-
x = block(x, freqs_cis, block_idx + idx, mask, past_key_values)
|
405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
@torch._dynamo.disable(recursive=False) # type: ignore
|
408 |
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
|
@@ -462,6 +643,278 @@ class RavenForCausalLM(RavenPreTrainedModel):
|
|
462 |
model_inputs[key] = value
|
463 |
return model_inputs
|
464 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
|
466 |
probs = torch.softmax(logits.float(), dim=-1)
|
467 |
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
|
|
|
1 |
+
"""Minimal modeling.py file for HF compatibility and funny zero-shot experiments. Use only for inference."""
|
2 |
|
3 |
import torch
|
4 |
import math
|
5 |
|
6 |
from torch import Tensor
|
7 |
from dataclasses import dataclass
|
8 |
+
from typing import Optional, Union, Any
|
9 |
|
10 |
from .raven_config_minimal import RavenConfig
|
11 |
from transformers.cache_utils import Cache, DynamicCache
|
|
|
13 |
###################### Huggingface Glue code I ##################################################################
|
14 |
from transformers import PreTrainedModel
|
15 |
from transformers.utils import ModelOutput
|
16 |
+
from transformers.generation.utils import GenerateDecoderOnlyOutput
|
17 |
+
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from transformers import GenerationConfig
|
20 |
|
21 |
|
22 |
class RavenPreTrainedModel(PreTrainedModel):
|
|
|
43 |
past_key_values: Optional[Cache] = None
|
44 |
latent_states: Optional[torch.Tensor] = None
|
45 |
hidden_states: Optional[torch.Tensor] = None
|
46 |
+
attention_maps: Optional[dict[int, torch.Tensor]] = None
|
47 |
stats: Optional[dict] = None
|
48 |
|
49 |
|
|
|
70 |
|
71 |
|
72 |
class HuginnDynamicCache(DynamicCache):
|
73 |
+
def __init__(self, lookup_strategy: str = "full") -> None:
|
74 |
super().__init__()
|
75 |
self._seen_tokens = 0
|
76 |
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
|
|
|
79 |
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
|
80 |
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
|
81 |
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
|
82 |
+
self.lookup_strategy = lookup_strategy
|
83 |
|
84 |
def update(
|
85 |
self,
|
86 |
key_states: torch.Tensor,
|
87 |
value_states: torch.Tensor,
|
88 |
step_idx: int,
|
89 |
+
lookup_strategy: Optional[str] = None,
|
90 |
) -> tuple[torch.Tensor, torch.Tensor]:
|
91 |
+
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
|
92 |
+
if "compress-" in self.lookup_strategy and step_idx > 1: # hardcode for current model!
|
93 |
+
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
|
94 |
+
if "compress-s" in self.lookup_strategy:
|
95 |
+
new_step_idx = (step_idx - 2) % compression_stage + 2
|
96 |
+
else:
|
97 |
+
new_step_idx = (step_idx - 2) // compression_stage + 2
|
98 |
+
# @ print(step_idx, new_step_idx, compression_stage)
|
99 |
+
step_idx = new_step_idx
|
100 |
# Init
|
101 |
if step_idx not in self.key_cache:
|
102 |
self.key_cache[step_idx] = {}
|
|
|
106 |
self._seen_tokens += key_states.shape[-2]
|
107 |
# Add entries to cache
|
108 |
for idx, entry in enumerate(key_states.unbind(dim=-2)):
|
109 |
+
if "compress-" not in self.lookup_strategy:
|
110 |
+
assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
|
111 |
+
# print(f"Overwrote cache entry for step_idx {step_idx}") # likely the head
|
112 |
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
113 |
for idx, entry in enumerate(value_states.unbind(dim=-2)):
|
114 |
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
|
115 |
|
116 |
# Materialize past state based on lookup strategy:
|
117 |
+
if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
|
118 |
# All entries are present, materialize cache as normal
|
119 |
return (
|
120 |
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
|
121 |
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
|
122 |
)
|
123 |
else: # some entries where not previously computed
|
124 |
+
# if lookup_strategy.startswith("latest"):
|
125 |
+
# latest_keys = []
|
126 |
+
# latest_values = []
|
127 |
+
# for token_pos in range(self._seen_tokens):
|
128 |
+
# # Find the latest step that has this token position
|
129 |
+
# max_step = max((s for s in range(step_idx + 1) if token_pos in self.key_cache[s]), default=None)
|
130 |
+
# if max_step is None:
|
131 |
+
# raise ValueError(f"No cache entry found for token position {token_pos}")
|
132 |
+
# latest_keys.append(self.key_cache[max_step][token_pos])
|
133 |
+
# latest_values.append(self.value_cache[max_step][token_pos])
|
134 |
+
# return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
135 |
+
if lookup_strategy.startswith("latest-m4"):
|
136 |
latest_keys = []
|
137 |
latest_values = []
|
138 |
for token_pos in range(self._seen_tokens):
|
139 |
+
# For steps >= 2, use modulo 4
|
140 |
+
if step_idx >= 2:
|
141 |
+
# Find valid steps for this token position
|
142 |
+
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
|
143 |
+
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
|
144 |
+
else:
|
145 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
146 |
if max_step is None:
|
147 |
raise ValueError(f"No cache entry found for token position {token_pos}")
|
148 |
latest_keys.append(self.key_cache[max_step][token_pos])
|
149 |
latest_values.append(self.value_cache[max_step][token_pos])
|
150 |
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
151 |
+
elif lookup_strategy.startswith("skip"):
|
152 |
existing_keys = []
|
153 |
existing_values = []
|
154 |
for token_pos in range(self._seen_tokens):
|
|
|
156 |
existing_keys.append(self.key_cache[step_idx][token_pos])
|
157 |
existing_values.append(self.value_cache[step_idx][token_pos])
|
158 |
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
|
159 |
+
elif lookup_strategy.startswith("randomized"): # sanity check
|
160 |
rand_keys = []
|
161 |
rand_values = []
|
162 |
for token_pos in range(self._seen_tokens):
|
163 |
+
if step_idx < 2: # For prelude steps
|
164 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
165 |
+
else: # Get all steps from same block position
|
166 |
+
curr_modulo = (step_idx - 2) % 4 + 2
|
167 |
+
valid_steps = [
|
168 |
+
s
|
169 |
+
for s in range(2, step_idx + 1)
|
170 |
+
if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
|
171 |
+
]
|
172 |
+
max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
|
173 |
+
rand_keys.append(self.key_cache[max_step][token_pos])
|
174 |
+
rand_values.append(self.value_cache[max_step][token_pos])
|
175 |
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
|
176 |
else:
|
177 |
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
|
|
185 |
def get_seq_length(self, step_idx: int = 0) -> int:
|
186 |
return self._seen_tokens
|
187 |
|
188 |
+
def get_memory_usage(self) -> float:
|
189 |
+
total_bytes = 0
|
190 |
+
# For each recurrent step/layer index
|
191 |
+
for step_idx in self.key_cache:
|
192 |
+
# Get the sequence cache for this step
|
193 |
+
key_seq_cache = self.key_cache[step_idx]
|
194 |
+
for seq_idx in key_seq_cache:
|
195 |
+
key_tensor = key_seq_cache[seq_idx]
|
196 |
+
# Add memory for of key tensors, assuming value is the same
|
197 |
+
total_bytes += key_tensor.nelement() * key_tensor.element_size()
|
198 |
+
return total_bytes * 2 / (1024 * 1024)
|
199 |
+
|
200 |
|
201 |
class CausalSelfAttention(torch.nn.Module):
|
202 |
def __init__(self, config: RavenConfig) -> None:
|
|
|
220 |
step_idx: int,
|
221 |
mask: Optional[Tensor] = None,
|
222 |
past_key_values: Optional[Cache] = None,
|
223 |
+
return_attn: bool = False,
|
224 |
+
) -> tuple[Tensor, Optional[Tensor]]:
|
225 |
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
|
226 |
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
|
227 |
q = q.view(B, S, self.n_head, self.head_dim)
|
|
|
241 |
if past_key_values is not None:
|
242 |
k, v = past_key_values.update(k, v, step_idx)
|
243 |
|
244 |
+
if return_attn:
|
245 |
+
y, attention_map = self.compute_eager_sdpa(q, k, v, attn_mask=mask)
|
246 |
+
else:
|
247 |
+
y = torch.nn.functional.scaled_dot_product_attention(
|
248 |
+
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=q.shape[2] > 1
|
249 |
+
)
|
250 |
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
|
251 |
+
return self.proj(y), attention_map if return_attn else None
|
252 |
+
|
253 |
+
def compute_eager_sdpa(self, q, k, v, attn_mask):
|
254 |
+
scale = 1.0 / math.sqrt(self.head_dim)
|
255 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) * scale
|
256 |
+
|
257 |
+
if attn_mask is not None:
|
258 |
+
scores = scores + attn_mask
|
259 |
+
if q.shape[2] > 1:
|
260 |
+
causal_mask = torch.triu(torch.ones(q.shape[2], q.shape[2]), diagonal=1).bool()
|
261 |
+
scores.masked_fill_(causal_mask.to(scores.device), float("-inf"))
|
262 |
+
|
263 |
+
attention_weights = torch.nn.functional.softmax(scores, dim=-1)
|
264 |
+
y = torch.matmul(attention_weights, v)
|
265 |
+
return y, attention_weights.max(dim=1)[0]
|
266 |
|
267 |
|
268 |
class GatedMLP(torch.nn.Module):
|
|
|
301 |
step_idx: int,
|
302 |
mask: Optional[Tensor] = None,
|
303 |
past_key_values: Optional[Cache] = None,
|
304 |
+
return_attn: bool = False,
|
305 |
+
) -> tuple[Tensor, Optional[Tensor]]:
|
306 |
+
attn_out, attn_map = self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values, return_attn)
|
307 |
+
x = self.norm_2(attn_out + x)
|
308 |
x = self.norm_4(self.mlp(self.norm_3(x)) + x)
|
309 |
+
return x, attn_map
|
310 |
|
311 |
|
312 |
class RavenForCausalLM(RavenPreTrainedModel):
|
|
|
389 |
|
390 |
if use_cache and past_key_values is None:
|
391 |
past_key_values = HuginnDynamicCache()
|
392 |
+
attn_maps = {}
|
393 |
+
return_attn = output_details["return_attention"]
|
394 |
|
395 |
# Non-recurrent prelude
|
396 |
for block_idx, block in enumerate(self.transformer.prelude):
|
397 |
+
input_embeds, attn_map = block(
|
398 |
+
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn
|
399 |
+
)
|
400 |
+
attn_maps[block_idx] = attn_map
|
401 |
|
402 |
# Main recurrence
|
403 |
+
x, num_steps_no_grad, num_steps_with_grad, xk, block_idx, attn_maps = self.iterate_forward(
|
404 |
input_embeds, # type: ignore
|
405 |
input_states,
|
406 |
freqs_cis,
|
|
|
408 |
attention_mask,
|
409 |
past_key_values,
|
410 |
num_steps,
|
411 |
+
attn_maps,
|
412 |
)
|
413 |
latent_states = x.clone().detach()
|
414 |
|
415 |
# Coda layers
|
416 |
for block_idx, block in enumerate(self.transformer.coda, start=1):
|
417 |
+
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values, return_attn)
|
418 |
+
attn_maps[-block_idx] = attn_map
|
419 |
x = self.transformer.ln_f(x)
|
420 |
|
421 |
# Prediction head, assuming labels really are labels and not equal to input_ids
|
|
|
434 |
past_key_values=past_key_values,
|
435 |
hidden_states=x if output_details["return_head"] else None,
|
436 |
latent_states=latent_states if output_details["return_latents"] else None,
|
437 |
+
attention_maps=attn_maps if output_details["return_attention"] else None, # type: ignore
|
438 |
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
|
439 |
if output_details["return_stats"]
|
440 |
else None,
|
|
|
450 |
mask,
|
451 |
past_key_values: Optional[Cache] = None,
|
452 |
num_steps: Optional[torch.Tensor] = None,
|
453 |
+
attn_maps: dict = {},
|
454 |
):
|
455 |
x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
|
|
|
456 |
if num_steps is None:
|
457 |
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
|
458 |
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
|
|
|
467 |
# and all parameters are always used
|
468 |
for step in range(num_steps_no_grad):
|
469 |
xk = x
|
470 |
+
x, block_idx, attn_maps = self.core_block_forward(
|
471 |
+
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps
|
472 |
+
)
|
473 |
|
474 |
for step in range(num_steps_with_grad):
|
475 |
xk = x
|
476 |
+
x, block_idx, attn_maps = self.core_block_forward(
|
477 |
+
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps
|
478 |
+
)
|
479 |
+
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx, attn_maps
|
480 |
|
481 |
def core_block_forward(
|
482 |
+
self,
|
483 |
+
x,
|
484 |
+
input_embeds,
|
485 |
+
freqs_cis,
|
486 |
+
mask,
|
487 |
+
past_key_values,
|
488 |
+
block_idx: Union[torch.Tensor, int],
|
489 |
+
attn_maps: dict = {},
|
490 |
):
|
491 |
x = self.transformer.adapter(torch.cat([x, input_embeds], dim=-1))
|
492 |
for idx, block in enumerate(self.transformer.core_block, start=1):
|
493 |
+
x, attn_map = block(x, freqs_cis, block_idx + idx, mask, past_key_values, return_attn=len(attn_maps) > 0)
|
494 |
+
attn_maps[block_idx + idx] = attn_map
|
495 |
+
return x, block_idx + idx, attn_maps
|
496 |
+
|
497 |
+
@torch.no_grad()
|
498 |
+
def iterate_one_step(
|
499 |
+
self,
|
500 |
+
input_embeds,
|
501 |
+
input_states,
|
502 |
+
position_ids: Optional[torch.Tensor] = None,
|
503 |
+
cache_position: Optional[torch.Tensor] = None,
|
504 |
+
block_idx: Union[torch.Tensor, int] = 0,
|
505 |
+
attention_mask: Optional[Tensor] = None,
|
506 |
+
past_key_values: Optional[Cache] = None,
|
507 |
+
attn_maps: dict = {},
|
508 |
+
):
|
509 |
+
if position_ids is None and cache_position is None:
|
510 |
+
freqs_cis = self.freqs_cis[:, : input_embeds.shape[1]]
|
511 |
+
elif position_ids is not None:
|
512 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
513 |
+
elif cache_position is not None:
|
514 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
515 |
+
x, block_idx, attn_maps = self.core_block_forward(
|
516 |
+
input_states, input_embeds, freqs_cis, attention_mask, past_key_values, block_idx, attn_maps
|
517 |
+
)
|
518 |
+
return x, block_idx, attn_maps
|
519 |
+
|
520 |
+
def predict_from_latents(
|
521 |
+
self,
|
522 |
+
latents,
|
523 |
+
attention_mask: Optional[torch.Tensor] = None,
|
524 |
+
position_ids: Optional[torch.Tensor] = None,
|
525 |
+
cache_position: Optional[torch.Tensor] = None,
|
526 |
+
past_key_values: Optional[Cache] = None,
|
527 |
+
return_attn: bool = False,
|
528 |
+
attn_maps: dict = {},
|
529 |
+
):
|
530 |
+
if position_ids is None and cache_position is None:
|
531 |
+
freqs_cis = self.freqs_cis[:, : latents.shape[1]]
|
532 |
+
elif position_ids is not None:
|
533 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
534 |
+
elif cache_position is not None:
|
535 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
536 |
+
x = self.transformer.ln_f(latents)
|
537 |
+
# Coda layers
|
538 |
+
for block_idx, block in enumerate(self.transformer.coda, start=1):
|
539 |
+
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values)
|
540 |
+
attn_maps[block_idx] = attn_map
|
541 |
+
x = self.transformer.ln_f(x)
|
542 |
+
|
543 |
+
logits = self.lm_head(x).float()
|
544 |
+
|
545 |
+
return CausalLMOutputRecurrentLatents(
|
546 |
+
loss=torch.as_tensor(0.0),
|
547 |
+
log_ppl=torch.as_tensor(0.0),
|
548 |
+
logits=logits,
|
549 |
+
past_key_values=past_key_values,
|
550 |
+
attention_maps=attn_maps if len(attn_maps) > 0 else None,
|
551 |
+
)
|
552 |
+
|
553 |
+
def embed_inputs(
|
554 |
+
self,
|
555 |
+
input_ids: torch.Tensor,
|
556 |
+
attention_mask: Optional[torch.Tensor] = None,
|
557 |
+
position_ids: Optional[torch.Tensor] = None,
|
558 |
+
past_key_values: Optional[Cache] = None,
|
559 |
+
use_cache: bool = False,
|
560 |
+
cache_position: Optional[torch.Tensor] = None,
|
561 |
+
return_attn: bool = False,
|
562 |
+
**kwargs,
|
563 |
+
) -> tuple[torch.Tensor, int, dict[int, Tensor]]:
|
564 |
+
# Support multiple position formats:
|
565 |
+
if position_ids is None and cache_position is None:
|
566 |
+
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
|
567 |
+
elif position_ids is not None:
|
568 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
569 |
+
elif cache_position is not None:
|
570 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
571 |
+
|
572 |
+
input_embeds = self.transformer.wte(input_ids)
|
573 |
+
|
574 |
+
if self.emb_scale != 1:
|
575 |
+
input_embeds = input_embeds * self.emb_scale # type: ignore
|
576 |
+
|
577 |
+
if use_cache and past_key_values is None:
|
578 |
+
past_key_values = HuginnDynamicCache()
|
579 |
+
|
580 |
+
# Non-recurrent prelude
|
581 |
+
attn_maps = {}
|
582 |
+
for block_idx, block in enumerate(self.transformer.prelude):
|
583 |
+
input_embeds, attn_maps = block(
|
584 |
+
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn
|
585 |
+
)
|
586 |
+
return input_embeds, block_idx, attn_maps
|
587 |
|
588 |
@torch._dynamo.disable(recursive=False) # type: ignore
|
589 |
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
|
|
|
643 |
model_inputs[key] = value
|
644 |
return model_inputs
|
645 |
|
646 |
+
@torch.no_grad()
|
647 |
+
def generate_minimal(
|
648 |
+
self,
|
649 |
+
input_ids: torch.LongTensor,
|
650 |
+
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
651 |
+
tokenizer=None,
|
652 |
+
streamer=None,
|
653 |
+
continuous_compute=False, # warm-start state / continuous CoT
|
654 |
+
cache_kwargs: dict = {},
|
655 |
+
**model_kwargs,
|
656 |
+
) -> Union[torch.Tensor, dict[str, Any]]:
|
657 |
+
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
|
658 |
+
# Setup
|
659 |
+
if generation_config is None:
|
660 |
+
generation_config: GenerationConfig = self.generation_config # type: ignore
|
661 |
+
model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
|
662 |
+
model_kwargs["use_cache"] = True
|
663 |
+
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
664 |
+
stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
|
665 |
+
if continuous_compute:
|
666 |
+
embedded_inputs, _, _ = self.embed_inputs(input_ids)
|
667 |
+
model_kwargs["input_states"] = self.initialize_state(embedded_inputs)
|
668 |
+
# Generate tokens
|
669 |
+
for _ in range(generation_config.max_length - input_ids.shape[1]):
|
670 |
+
# Forward pass
|
671 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
672 |
+
outputs = self(**model_inputs)
|
673 |
+
next_token_logits = outputs.logits[0, -1, :]
|
674 |
+
if continuous_compute:
|
675 |
+
current_last_latent = outputs.latent_states[:, -1:, :]
|
676 |
+
|
677 |
+
# Sample or select next token
|
678 |
+
if generation_config.do_sample:
|
679 |
+
if generation_config.temperature:
|
680 |
+
next_token_logits = next_token_logits / generation_config.temperature
|
681 |
+
|
682 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
683 |
+
|
684 |
+
# Apply top_k
|
685 |
+
if generation_config.top_k:
|
686 |
+
top_k_probs, _ = torch.topk(probs, generation_config.top_k)
|
687 |
+
probs[probs < top_k_probs[-1]] = 0
|
688 |
+
# Apply top_p
|
689 |
+
if generation_config.top_p:
|
690 |
+
sorted_probs = torch.sort(probs, descending=True)[0]
|
691 |
+
cumsum = torch.cumsum(sorted_probs, dim=-1)
|
692 |
+
probs[cumsum > generation_config.top_p] = 0
|
693 |
+
# Apply min_p
|
694 |
+
if generation_config.min_p:
|
695 |
+
probs[probs < generation_config.min_p * probs.max()] = 0
|
696 |
+
|
697 |
+
probs = probs / probs.sum()
|
698 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
699 |
+
else:
|
700 |
+
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
701 |
+
|
702 |
+
input_ids = torch.cat([input_ids, next_token[None, :]], dim=-1) # type: ignore
|
703 |
+
|
704 |
+
if streamer:
|
705 |
+
streamer.put(next_token.cpu())
|
706 |
+
|
707 |
+
# Update model kwargs
|
708 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
709 |
+
if continuous_compute:
|
710 |
+
model_kwargs["input_states"] = current_last_latent
|
711 |
+
|
712 |
+
# Check if we hit a stop token
|
713 |
+
if stop_tokens is not None and next_token in stop_tokens:
|
714 |
+
break
|
715 |
+
|
716 |
+
if streamer:
|
717 |
+
streamer.end()
|
718 |
+
|
719 |
+
if generation_config.return_dict_in_generate:
|
720 |
+
return GenerateDecoderOnlyOutput(
|
721 |
+
sequences=input_ids,
|
722 |
+
scores=None,
|
723 |
+
logits=None,
|
724 |
+
attentions=None,
|
725 |
+
hidden_states=None,
|
726 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
727 |
+
)
|
728 |
+
return input_ids
|
729 |
+
|
730 |
+
@torch.no_grad()
|
731 |
+
def generate_with_adaptive_compute(
|
732 |
+
self,
|
733 |
+
input_ids: torch.LongTensor,
|
734 |
+
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
735 |
+
tokenizer=None,
|
736 |
+
streamer=None,
|
737 |
+
continuous_compute=False, # warm-start state / continuous CoT
|
738 |
+
latent_dampening=False,
|
739 |
+
criterion="entropy-diff",
|
740 |
+
exit_threshold: Union[str, float, int] = "auto",
|
741 |
+
cache_kwargs: dict = {},
|
742 |
+
**model_kwargs,
|
743 |
+
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
|
744 |
+
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
|
745 |
+
# Setup
|
746 |
+
if generation_config is None:
|
747 |
+
generation_config: GenerationConfig = self.generation_config # type: ignore
|
748 |
+
model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
|
749 |
+
model_kwargs["use_cache"] = True
|
750 |
+
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
751 |
+
stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
|
752 |
+
if continuous_compute:
|
753 |
+
embedded_inputs, _, _ = self.embed_inputs(input_ids)
|
754 |
+
current_last_latent = self.initialize_state(embedded_inputs)
|
755 |
+
compute_steps = []
|
756 |
+
|
757 |
+
# Generate tokens
|
758 |
+
for step in range(generation_config.max_length - input_ids.shape[1]):
|
759 |
+
# Adaptive compute forward
|
760 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
761 |
+
aux_inputs = {
|
762 |
+
k: model_inputs[k] for k in ["cache_position", "past_key_values", "attention_mask"] if k in model_inputs
|
763 |
+
}
|
764 |
+
embedded_inputs, block_idx, _ = self.embed_inputs(model_inputs["input_ids"], **aux_inputs)
|
765 |
+
if not continuous_compute:
|
766 |
+
current_latents = self.initialize_state(embedded_inputs, deterministic=False)
|
767 |
+
else:
|
768 |
+
current_latents = current_last_latent
|
769 |
+
|
770 |
+
# Prep criterions:
|
771 |
+
if criterion == "entropy-diff":
|
772 |
+
entropy = torch.tensor(100.0, device=input_ids.device)
|
773 |
+
exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
|
774 |
+
elif criterion in ["latent-diff", "none"]:
|
775 |
+
exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
|
776 |
+
elif "kl" in criterion:
|
777 |
+
V = self.config.padded_vocab_size
|
778 |
+
log_probs = (1 / V * torch.ones(V, device=input_ids.device)).log()
|
779 |
+
if criterion == "minp-kl":
|
780 |
+
exit_threshold = 1e-6 if exit_threshold == "auto" else float(exit_threshold)
|
781 |
+
else:
|
782 |
+
exit_threshold = 5e-4 if exit_threshold == "auto" else float(exit_threshold)
|
783 |
+
elif criterion == "argmax-stability":
|
784 |
+
stable_for_n_steps = 0
|
785 |
+
current_argmax = torch.tensor(-1, dtype=torch.long, device=input_ids.device)
|
786 |
+
exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
|
787 |
+
else:
|
788 |
+
raise ValueError("Invalid adaptive compute strategy.")
|
789 |
+
|
790 |
+
all_latents = []
|
791 |
+
exit_values = []
|
792 |
+
for compute_step in range(model_inputs["num_steps"]):
|
793 |
+
prev_latents = current_latents.clone()
|
794 |
+
current_latents, block_idx, _ = self.iterate_one_step(
|
795 |
+
embedded_inputs, current_latents, block_idx=block_idx, **aux_inputs
|
796 |
+
)
|
797 |
+
all_latents.append(current_latents if latent_dampening else None)
|
798 |
+
if step > 0: # do not exit in prefill:
|
799 |
+
if criterion == "entropy-diff":
|
800 |
+
prev_entropy = entropy.clone()
|
801 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
802 |
+
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
803 |
+
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1).mean()
|
804 |
+
entropy_diff = (entropy - prev_entropy).abs()
|
805 |
+
exit_values.append(entropy_diff.item())
|
806 |
+
if entropy_diff < exit_threshold:
|
807 |
+
break
|
808 |
+
elif criterion == "latent-diff":
|
809 |
+
norm_diff = (prev_latents - current_latents).norm() / current_latents.norm()
|
810 |
+
exit_values.append(norm_diff.item())
|
811 |
+
if norm_diff < exit_threshold:
|
812 |
+
break
|
813 |
+
elif criterion == "kl":
|
814 |
+
prev_log_probs = log_probs.clone()
|
815 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
816 |
+
log_probs = F.log_softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
817 |
+
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
818 |
+
exit_values.append(kl.item())
|
819 |
+
if kl < exit_threshold:
|
820 |
+
break
|
821 |
+
elif criterion == "minp-kl":
|
822 |
+
prev_log_probs = log_probs.clone()
|
823 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
824 |
+
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
825 |
+
probs[probs < 0.1 * probs.max()] = 1 / V
|
826 |
+
probs = probs / probs.sum()
|
827 |
+
log_probs = probs.log()
|
828 |
+
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
829 |
+
exit_values.append(kl.item())
|
830 |
+
if kl < exit_threshold:
|
831 |
+
break
|
832 |
+
elif criterion == "argmax-stability":
|
833 |
+
prev_argmax = current_argmax.clone()
|
834 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
835 |
+
current_argmax = outputs.logits[0, -1, :].argmax(dim=-1) # type: ignore
|
836 |
+
if current_argmax == prev_argmax:
|
837 |
+
stable_for_n_steps += 1
|
838 |
+
else:
|
839 |
+
stable_for_n_steps = 0
|
840 |
+
exit_values.append(stable_for_n_steps)
|
841 |
+
if stable_for_n_steps >= exit_threshold:
|
842 |
+
break
|
843 |
+
elif criterion == "none":
|
844 |
+
pass
|
845 |
+
|
846 |
+
else:
|
847 |
+
if not latent_dampening:
|
848 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
849 |
+
else:
|
850 |
+
dampened_latents = torch.sum(torch.cat(all_latents, dim=0), dim=0, keepdim=True)
|
851 |
+
outputs = self.predict_from_latents(dampened_latents, **aux_inputs)
|
852 |
+
compute_steps.append([compute_step + 1, exit_values])
|
853 |
+
|
854 |
+
next_token_logits = outputs.logits[0, -1, :] # type: ignore
|
855 |
+
if continuous_compute: # Save last latent
|
856 |
+
current_last_latent = current_latents[:, -1:, :]
|
857 |
+
|
858 |
+
# Sample or select next token
|
859 |
+
if generation_config.do_sample:
|
860 |
+
if generation_config.temperature:
|
861 |
+
next_token_logits = next_token_logits / generation_config.temperature
|
862 |
+
|
863 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
864 |
+
# Apply top_k
|
865 |
+
if generation_config.top_k:
|
866 |
+
top_k_probs, _ = torch.topk(probs, generation_config.top_k)
|
867 |
+
probs[probs < top_k_probs[-1]] = 0
|
868 |
+
# Apply top_p
|
869 |
+
if generation_config.top_p:
|
870 |
+
sorted_probs = torch.sort(probs, descending=True)[0]
|
871 |
+
cumsum = torch.cumsum(sorted_probs, dim=-1)
|
872 |
+
probs[cumsum > generation_config.top_p] = 0
|
873 |
+
# Apply min_p
|
874 |
+
if generation_config.min_p:
|
875 |
+
probs[probs < generation_config.min_p * probs.max()] = 0
|
876 |
+
|
877 |
+
probs = probs / probs.sum()
|
878 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
879 |
+
else:
|
880 |
+
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
881 |
+
|
882 |
+
input_ids = torch.cat([input_ids, next_token[None, :]], dim=-1) # type: ignore
|
883 |
+
|
884 |
+
if streamer:
|
885 |
+
streamer.put(next_token.cpu())
|
886 |
+
|
887 |
+
# Update model kwargs
|
888 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
889 |
+
|
890 |
+
# Check if we hit a stop token
|
891 |
+
if stop_tokens is not None and next_token in stop_tokens:
|
892 |
+
break
|
893 |
+
|
894 |
+
if streamer:
|
895 |
+
streamer.end()
|
896 |
+
|
897 |
+
if generation_config.return_dict_in_generate:
|
898 |
+
return GenerateDecoderOnlyOutput(
|
899 |
+
sequences=input_ids,
|
900 |
+
scores=compute_steps, # type: ignore
|
901 |
+
logits=None,
|
902 |
+
attentions=None,
|
903 |
+
hidden_states=None,
|
904 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
905 |
+
)
|
906 |
+
return input_ids
|
907 |
+
|
908 |
+
def _get_stops(self, generation_config, tokenizer):
|
909 |
+
stop_tokens = set()
|
910 |
+
if generation_config.eos_token_id is not None:
|
911 |
+
stop_tokens.add(generation_config.eos_token_id)
|
912 |
+
if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
|
913 |
+
for s in generation_config.stop_strings:
|
914 |
+
token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
|
915 |
+
stop_tokens.add(token_id)
|
916 |
+
return torch.tensor(list(stop_tokens))
|
917 |
+
|
918 |
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
|
919 |
probs = torch.softmax(logits.float(), dim=-1)
|
920 |
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
|