Panda Reach Dense
Browse files- A2C-pandaReachDense-v3.zip +3 -0
- A2C-pandaReachDense-v3/_stable_baselines3_version +1 -0
- A2C-pandaReachDense-v3/data +97 -0
- A2C-pandaReachDense-v3/policy.optimizer.pth +3 -0
- A2C-pandaReachDense-v3/policy.pth +3 -0
- A2C-pandaReachDense-v3/pytorch_variables.pth +3 -0
- A2C-pandaReachDense-v3/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
A2C-pandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ff2e144e265fb6abd58a30d8c627586c21250b79ad799451a4fdca69893e0cd
|
3 |
+
size 108251
|
A2C-pandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
A2C-pandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7be041f56c20>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7be041f4adc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1699844479167452120,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdi92Prav+bqc4eY+eQLQvmcT+L6Q4Nk+5cnQP3m1LsCv76i/di92Prav+bqc4eY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAedlrv8eUsb4fdBq/qJJNvz8mz78Nh8c/8B/KPwnprr/Dagw+vEOZv25muD2wtKA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB2L3Y+tq/5upzh5j7cj/U+MJwwusH/xD55AtC+ZxP4vpDg2T7CQWK9c8bWv5yXij/lydA/ebUuwK/vqL8VrC8/6yJZvw7DYD52L3Y+tq/5upzh5j7cj/U+MJwwusH/xD6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 2.4041542e-01 -1.9049558e-03 4.5094001e-01]\n [-4.0626886e-01 -4.8452303e-01 4.2554140e-01]\n [ 1.6311613e+00 -2.7298262e+00 -1.3198146e+00]\n [ 2.4041542e-01 -1.9049558e-03 4.5094001e-01]]",
|
34 |
+
"desired_goal": "[[-0.9212871 -0.3468382 -0.60333437]\n [-0.80301905 -1.6183547 1.5588089 ]\n [ 1.5790997 -1.3664867 0.13712601]\n [-1.1973796 0.09003912 1.2555141 ]]",
|
35 |
+
"observation": "[[ 2.4041542e-01 -1.9049558e-03 4.5094001e-01 4.7961318e-01\n -6.7371409e-04 3.8476375e-01]\n [-4.0626886e-01 -4.8452303e-01 4.2554140e-01 -5.5238493e-02\n -1.6779312e+00 1.0827518e+00]\n [ 1.6311613e+00 -2.7298262e+00 -1.3198146e+00 6.8621951e-01\n -8.4818906e-01 2.1949407e-01]\n [ 2.4041542e-01 -1.9049558e-03 4.5094001e-01 4.7961318e-01\n -6.7371409e-04 3.8476375e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYMy1PKyh6L3AO4M+NB0/PPeYFr1iHLU9b6XFPA3gkr2XrbQ9cdXEvZ43ij2LhBw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.02219218 -0.11358961 0.25631523]\n [ 0.01166468 -0.03676697 0.08843304]\n [ 0.02412674 -0.07171641 0.08822172]\n [-0.09611023 0.06748889 0.15284936]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9JTefqX4TOMAWyUSwOMAXSUR0Cm1wduxbB5dX2UKGgGR7+58KG+K0laaAdLAmgIR0Cm17s4tHx0dX2UKGgGR7/Y7tzCDVYqaAdLBGgIR0Cm12F8ohIOdX2UKGgGR7/bpTMqz7djaAdLBGgIR0Cm1ra0pmVadX2UKGgGR7/FjpcHGCI2aAdLAmgIR0Cm12ulwcYJdX2UKGgGR7/QagmJFb3XaAdLA2gIR0Cm1xZ0CA+ZdX2UKGgGR7+/AGjbi6xxaAdLAmgIR0Cm1sFA3T/idX2UKGgGR7/MFJxvNu+AaAdLA2gIR0Cm18pQtSQ6dX2UKGgGR7+nxDst03fiaAdLAWgIR0Cm13C8e0XxdX2UKGgGR7/AzjWCmMwUaAdLAmgIR0Cm1x/N7jT8dX2UKGgGR7/B79hqj8DTaAdLAmgIR0Cm1sqaoddWdX2UKGgGR7/CWsRxtHhCaAdLAmgIR0Cm19QsoUi7dX2UKGgGR7+99oexOclPaAdLAmgIR0Cm13tIkJKKdX2UKGgGR7/JZFG5MDfWaAdLA2gIR0Cm1t7M5fdAdX2UKGgGR7/UV7hNucc3aAdLA2gIR0Cm1+fhVENOdX2UKGgGR7/LTlT3qRlpaAdLA2gIR0Cm145b6guidX2UKGgGR7/WZ6lchTwVaAdLBGgIR0Cm1zkIomXxdX2UKGgGR7/E+23KB/ZvaAdLAmgIR0Cm1ufHxSYPdX2UKGgGR7/IGD+R5kbxaAdLA2gIR0Cm1/fD+BH1dX2UKGgGR7/PL9MsYl6aaAdLA2gIR0Cm1556t1ZDdX2UKGgGR7+mRq46Oo5xaAdLAWgIR0Cm1/yZ0CA+dX2UKGgGR7/bIeYD1XeWaAdLBGgIR0Cm101GLDQ7dX2UKGgGR7+k7hegL7XQaAdLAWgIR0Cm2ADhLoOhdX2UKGgGR7/aI4EOiFj/aAdLBGgIR0Cm1vv5YYBOdX2UKGgGR7/Nx/d69kBkaAdLA2gIR0Cm16sY2sJZdX2UKGgGR7/UknTiKiwjaAdLA2gIR0Cm11loUSIydX2UKGgGR7/JXQtz0Yj0aAdLA2gIR0Cm2A8c+7lJdX2UKGgGR7/HGyX2M85kaAdLA2gIR0Cm1wprk8zRdX2UKGgGR7+1ZKWcBltkaAdLAmgIR0Cm12RF7UobdX2UKGgGR7/Zc7hegL7XaAdLBGgIR0Cm1746wMYudX2UKGgGR7+9DPWxyGSIaAdLAmgIR0Cm1xTtTkyUdX2UKGgGR7/HRsMy8BdVaAdLA2gIR0Cm2B8hcJMQdX2UKGgGR7/V9MsYl6Z6aAdLA2gIR0Cm13VwHZ9NdX2UKGgGR7/MpAlfJFLGaAdLA2gIR0Cm19HJ1aGIdX2UKGgGR7/Jx7zCk43naAdLA2gIR0Cm1ycpTdcjdX2UKGgGR7/XFjd56dDqaAdLBGgIR0Cm2DQTVUdadX2UKGgGR7/WRg7YChexaAdLA2gIR0Cm14R+z+m4dX2UKGgGR7/Rh+fAbhm5aAdLA2gIR0Cm196KDTScdX2UKGgGR7+zPt2LYPGyaAdLAmgIR0Cm2DyVv/BFdX2UKGgGR7/cR1HOKO1faAdLBGgIR0Cm1zf4AS39dX2UKGgGR7/AF8ohIOH4aAdLAmgIR0Cm1+mnwXqJdX2UKGgGR7/UTqB3A2ycaAdLA2gIR0Cm15RJul41dX2UKGgGR7/CfNA1NxlyaAdLAmgIR0Cm1/IfCAMEdX2UKGgGR7/MlN1yNn5BaAdLA2gIR0Cm10dkz41xdX2UKGgGR7/SfYzzmOlwaAdLBGgIR0Cm2FCaiKzidX2UKGgGR7/PVf/m1YyPaAdLBGgIR0Cm16VdxAB1dX2UKGgGR7/KH/LkjopyaAdLA2gIR0Cm2AF4TsY3dX2UKGgGR7/Oy0KJEYwZaAdLA2gIR0Cm11aqjrRjdX2UKGgGR7/Xh86V+qioaAdLA2gIR0Cm2F/PPcBVdX2UKGgGR7+ywt8NQTEjaAdLAmgIR0Cm17BcJMQFdX2UKGgGR7+WZy+6Ae7uaAdLAWgIR0Cm2GQgcLjQdX2UKGgGR7/B7el9BrvcaAdLAmgIR0Cm11+QlruZdX2UKGgGR7+kT8HfMwDeaAdLAWgIR0Cm2GitRvWIdX2UKGgGR7/QimVJL/S6aAdLA2gIR0Cm2A7ah6BzdX2UKGgGR7/G2DQJHAh0aAdLA2gIR0Cm1716eGwidX2UKGgGR7+4I5YHPeHjaAdLAmgIR0Cm2HPFm4AkdX2UKGgGR7/D3yI55qubaAdLAmgIR0Cm2BntOVPfdX2UKGgGR7/Nyc0+C9RKaAdLA2gIR0Cm1285sCT2dX2UKGgGR7/LJHy3CsOoaAdLA2gIR0Cm18zC1qnFdX2UKGgGR7/An752yLQ5aAdLAmgIR0Cm13eQ+2VndX2UKGgGR7/W3Ov+wTufaAdLA2gIR0Cm2Cchs67vdX2UKGgGR7+f0h/y5I6KaAdLAWgIR0Cm19G4RVZLdX2UKGgGR7/YfgrH2h7FaAdLBGgIR0Cm2IXiaRZEdX2UKGgGR7/AyPdVNpM6aAdLAmgIR0Cm14EXUH6edX2UKGgGR7+9MDfWMCLdaAdLAmgIR0Cm2JClzltCdX2UKGgGR7/TZ8KG+K0laAdLA2gIR0Cm2DbW/ag3dX2UKGgGR7/KS3b212JSaAdLA2gIR0Cm15AGjbi7dX2UKGgGR7/BS3LFGXolaAdLAmgIR0Cm2D8WKuSwdX2UKGgGR7/PNX5nDiwTaAdLA2gIR0Cm2J17Y02tdX2UKGgGR7/QGN70Fr2yaAdLA2gIR0Cm16E0aZQYdX2UKGgGR7/BjQzDXOGCaAdLAmgIR0Cm2Kq6FuejdX2UKGgGR7/Jc/MW43FUaAdLA2gIR0Cm2FEK3NLUdX2UKGgGR7/kiosI3R5UaAdLCWgIR0Cm1//DUExJdX2UKGgGR7+xUgjhUBGQaAdLAmgIR0Cm16qcEvCedX2UKGgGR7/Bnr6ciGFjaAdLAmgIR0Cm2LPHT7VKdX2UKGgGR7+k+TvAoG6gaAdLAWgIR0Cm2Llh5PdmdX2UKGgGR7/KXdCVrylOaAdLA2gIR0Cm2F+8f3evdX2UKGgGR7/CX9BKL877aAdLAmgIR0Cm2Apg9eQddX2UKGgGR7+xXzUZvUBoaAdLAmgIR0Cm2MSOq//OdX2UKGgGR7/BRgqmTC+DaAdLAmgIR0Cm2BT2nKnvdX2UKGgGR7/XrnDBMzuXaAdLBGgIR0Cm17/vF3pwdX2UKGgGR7/GQvHtF8XvaAdLA2gIR0Cm2G74rSVodX2UKGgGR7+xVyWAwwj/aAdLAmgIR0Cm2Mzt9hJAdX2UKGgGR7/BqQA+6iCbaAdLAmgIR0Cm2HePJaJRdX2UKGgGR7/Kq4pc5bQkaAdLA2gIR0Cm2CIsiB5HdX2UKGgGR7/XrleWv8qGaAdLBGgIR0Cm19NCRfWudX2UKGgGR7/Rdszl90A+aAdLA2gIR0Cm2Nxhc7hfdX2UKGgGR7/S8P4EfT1DaAdLA2gIR0Cm2IYu9OARdX2UKGgGR7/KFFlTWGypaAdLA2gIR0Cm2DDcuanadX2UKGgGR7/PhE0BOpKjaAdLA2gIR0Cm19845tFbdX2UKGgGR7/KfLcKw6hhaAdLA2gIR0Cm2OgqNIbwdX2UKGgGR7/BnDiwSrYHaAdLAmgIR0Cm2I5jhDPXdX2UKGgGR7/Ti9IwudwvaAdLA2gIR0Cm2D7m2b5NdX2UKGgGR7+0U/OdGy5aaAdLAmgIR0Cm1+mQSzw+dX2UKGgGR7/Ahew9q1w6aAdLAmgIR0Cm2PJ71Iy1dX2UKGgGR7+7ijtXxOLzaAdLAmgIR0Cm2JiHARChdX2UKGgGR7+9NL127nPnaAdLAmgIR0Cm2PmbTc7AdX2UKGgGR7/DmYjSofjkaAdLAmgIR0Cm2J+q7yxzdX2UKGgGR7+OumrKeTV2aAdLAWgIR0Cm2P2fbsWwdX2UKGgGR7/W6iCaqjrSaAdLBGgIR0Cm1/iUornUdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
A2C-pandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d47ff6763c0a9fa7aae4e2c5f6a6390bee3154ef81700277404d7f058baed9ae
|
3 |
+
size 45167
|
A2C-pandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d98784bf168036e78c761343cbbe261bbaefbade19e392c2c2efa302fac9079e
|
3 |
+
size 46447
|
A2C-pandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
A2C-pandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.18 +/- 0.07
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7be041f56c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be041f4adc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699844479167452120, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdi92Prav+bqc4eY+eQLQvmcT+L6Q4Nk+5cnQP3m1LsCv76i/di92Prav+bqc4eY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAedlrv8eUsb4fdBq/qJJNvz8mz78Nh8c/8B/KPwnprr/Dagw+vEOZv25muD2wtKA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB2L3Y+tq/5upzh5j7cj/U+MJwwusH/xD55AtC+ZxP4vpDg2T7CQWK9c8bWv5yXij/lydA/ebUuwK/vqL8VrC8/6yJZvw7DYD52L3Y+tq/5upzh5j7cj/U+MJwwusH/xD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 2.4041542e-01 -1.9049558e-03 4.5094001e-01]\n [-4.0626886e-01 -4.8452303e-01 4.2554140e-01]\n [ 1.6311613e+00 -2.7298262e+00 -1.3198146e+00]\n [ 2.4041542e-01 -1.9049558e-03 4.5094001e-01]]", "desired_goal": "[[-0.9212871 -0.3468382 -0.60333437]\n [-0.80301905 -1.6183547 1.5588089 ]\n [ 1.5790997 -1.3664867 0.13712601]\n [-1.1973796 0.09003912 1.2555141 ]]", "observation": "[[ 2.4041542e-01 -1.9049558e-03 4.5094001e-01 4.7961318e-01\n -6.7371409e-04 3.8476375e-01]\n [-4.0626886e-01 -4.8452303e-01 4.2554140e-01 -5.5238493e-02\n -1.6779312e+00 1.0827518e+00]\n [ 1.6311613e+00 -2.7298262e+00 -1.3198146e+00 6.8621951e-01\n -8.4818906e-01 2.1949407e-01]\n [ 2.4041542e-01 -1.9049558e-03 4.5094001e-01 4.7961318e-01\n -6.7371409e-04 3.8476375e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYMy1PKyh6L3AO4M+NB0/PPeYFr1iHLU9b6XFPA3gkr2XrbQ9cdXEvZ43ij2LhBw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02219218 -0.11358961 0.25631523]\n [ 0.01166468 -0.03676697 0.08843304]\n [ 0.02412674 -0.07171641 0.08822172]\n [-0.09611023 0.06748889 0.15284936]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9JTefqX4TOMAWyUSwOMAXSUR0Cm1wduxbB5dX2UKGgGR7+58KG+K0laaAdLAmgIR0Cm17s4tHx0dX2UKGgGR7/Y7tzCDVYqaAdLBGgIR0Cm12F8ohIOdX2UKGgGR7/bpTMqz7djaAdLBGgIR0Cm1ra0pmVadX2UKGgGR7/FjpcHGCI2aAdLAmgIR0Cm12ulwcYJdX2UKGgGR7/QagmJFb3XaAdLA2gIR0Cm1xZ0CA+ZdX2UKGgGR7+/AGjbi6xxaAdLAmgIR0Cm1sFA3T/idX2UKGgGR7/MFJxvNu+AaAdLA2gIR0Cm18pQtSQ6dX2UKGgGR7+nxDst03fiaAdLAWgIR0Cm13C8e0XxdX2UKGgGR7/AzjWCmMwUaAdLAmgIR0Cm1x/N7jT8dX2UKGgGR7/B79hqj8DTaAdLAmgIR0Cm1sqaoddWdX2UKGgGR7/CWsRxtHhCaAdLAmgIR0Cm19QsoUi7dX2UKGgGR7+99oexOclPaAdLAmgIR0Cm13tIkJKKdX2UKGgGR7/JZFG5MDfWaAdLA2gIR0Cm1t7M5fdAdX2UKGgGR7/UV7hNucc3aAdLA2gIR0Cm1+fhVENOdX2UKGgGR7/LTlT3qRlpaAdLA2gIR0Cm145b6guidX2UKGgGR7/WZ6lchTwVaAdLBGgIR0Cm1zkIomXxdX2UKGgGR7/E+23KB/ZvaAdLAmgIR0Cm1ufHxSYPdX2UKGgGR7/IGD+R5kbxaAdLA2gIR0Cm1/fD+BH1dX2UKGgGR7/PL9MsYl6aaAdLA2gIR0Cm1556t1ZDdX2UKGgGR7+mRq46Oo5xaAdLAWgIR0Cm1/yZ0CA+dX2UKGgGR7/bIeYD1XeWaAdLBGgIR0Cm101GLDQ7dX2UKGgGR7+k7hegL7XQaAdLAWgIR0Cm2ADhLoOhdX2UKGgGR7/aI4EOiFj/aAdLBGgIR0Cm1vv5YYBOdX2UKGgGR7/Nx/d69kBkaAdLA2gIR0Cm16sY2sJZdX2UKGgGR7/UknTiKiwjaAdLA2gIR0Cm11loUSIydX2UKGgGR7/JXQtz0Yj0aAdLA2gIR0Cm2A8c+7lJdX2UKGgGR7/HGyX2M85kaAdLA2gIR0Cm1wprk8zRdX2UKGgGR7+1ZKWcBltkaAdLAmgIR0Cm12RF7UobdX2UKGgGR7/Zc7hegL7XaAdLBGgIR0Cm1746wMYudX2UKGgGR7+9DPWxyGSIaAdLAmgIR0Cm1xTtTkyUdX2UKGgGR7/HRsMy8BdVaAdLA2gIR0Cm2B8hcJMQdX2UKGgGR7/V9MsYl6Z6aAdLA2gIR0Cm13VwHZ9NdX2UKGgGR7/MpAlfJFLGaAdLA2gIR0Cm19HJ1aGIdX2UKGgGR7/Jx7zCk43naAdLA2gIR0Cm1ycpTdcjdX2UKGgGR7/XFjd56dDqaAdLBGgIR0Cm2DQTVUdadX2UKGgGR7/WRg7YChexaAdLA2gIR0Cm14R+z+m4dX2UKGgGR7/Rh+fAbhm5aAdLA2gIR0Cm196KDTScdX2UKGgGR7+zPt2LYPGyaAdLAmgIR0Cm2DyVv/BFdX2UKGgGR7/cR1HOKO1faAdLBGgIR0Cm1zf4AS39dX2UKGgGR7/AF8ohIOH4aAdLAmgIR0Cm1+mnwXqJdX2UKGgGR7/UTqB3A2ycaAdLA2gIR0Cm15RJul41dX2UKGgGR7/CfNA1NxlyaAdLAmgIR0Cm1/IfCAMEdX2UKGgGR7/MlN1yNn5BaAdLA2gIR0Cm10dkz41xdX2UKGgGR7/SfYzzmOlwaAdLBGgIR0Cm2FCaiKzidX2UKGgGR7/PVf/m1YyPaAdLBGgIR0Cm16VdxAB1dX2UKGgGR7/KH/LkjopyaAdLA2gIR0Cm2AF4TsY3dX2UKGgGR7/Oy0KJEYwZaAdLA2gIR0Cm11aqjrRjdX2UKGgGR7/Xh86V+qioaAdLA2gIR0Cm2F/PPcBVdX2UKGgGR7+ywt8NQTEjaAdLAmgIR0Cm17BcJMQFdX2UKGgGR7+WZy+6Ae7uaAdLAWgIR0Cm2GQgcLjQdX2UKGgGR7/B7el9BrvcaAdLAmgIR0Cm11+QlruZdX2UKGgGR7+kT8HfMwDeaAdLAWgIR0Cm2GitRvWIdX2UKGgGR7/QimVJL/S6aAdLA2gIR0Cm2A7ah6BzdX2UKGgGR7/G2DQJHAh0aAdLA2gIR0Cm1716eGwidX2UKGgGR7+4I5YHPeHjaAdLAmgIR0Cm2HPFm4AkdX2UKGgGR7/D3yI55qubaAdLAmgIR0Cm2BntOVPfdX2UKGgGR7/Nyc0+C9RKaAdLA2gIR0Cm1285sCT2dX2UKGgGR7/LJHy3CsOoaAdLA2gIR0Cm18zC1qnFdX2UKGgGR7/An752yLQ5aAdLAmgIR0Cm13eQ+2VndX2UKGgGR7/W3Ov+wTufaAdLA2gIR0Cm2Cchs67vdX2UKGgGR7+f0h/y5I6KaAdLAWgIR0Cm19G4RVZLdX2UKGgGR7/YfgrH2h7FaAdLBGgIR0Cm2IXiaRZEdX2UKGgGR7/AyPdVNpM6aAdLAmgIR0Cm14EXUH6edX2UKGgGR7+9MDfWMCLdaAdLAmgIR0Cm2JClzltCdX2UKGgGR7/TZ8KG+K0laAdLA2gIR0Cm2DbW/ag3dX2UKGgGR7/KS3b212JSaAdLA2gIR0Cm15AGjbi7dX2UKGgGR7/BS3LFGXolaAdLAmgIR0Cm2D8WKuSwdX2UKGgGR7/PNX5nDiwTaAdLA2gIR0Cm2J17Y02tdX2UKGgGR7/QGN70Fr2yaAdLA2gIR0Cm16E0aZQYdX2UKGgGR7/BjQzDXOGCaAdLAmgIR0Cm2Kq6FuejdX2UKGgGR7/Jc/MW43FUaAdLA2gIR0Cm2FEK3NLUdX2UKGgGR7/kiosI3R5UaAdLCWgIR0Cm1//DUExJdX2UKGgGR7+xUgjhUBGQaAdLAmgIR0Cm16qcEvCedX2UKGgGR7/Bnr6ciGFjaAdLAmgIR0Cm2LPHT7VKdX2UKGgGR7+k+TvAoG6gaAdLAWgIR0Cm2Llh5PdmdX2UKGgGR7/KXdCVrylOaAdLA2gIR0Cm2F+8f3evdX2UKGgGR7/CX9BKL877aAdLAmgIR0Cm2Apg9eQddX2UKGgGR7+xXzUZvUBoaAdLAmgIR0Cm2MSOq//OdX2UKGgGR7/BRgqmTC+DaAdLAmgIR0Cm2BT2nKnvdX2UKGgGR7/XrnDBMzuXaAdLBGgIR0Cm17/vF3pwdX2UKGgGR7/GQvHtF8XvaAdLA2gIR0Cm2G74rSVodX2UKGgGR7+xVyWAwwj/aAdLAmgIR0Cm2Mzt9hJAdX2UKGgGR7/BqQA+6iCbaAdLAmgIR0Cm2HePJaJRdX2UKGgGR7/Kq4pc5bQkaAdLA2gIR0Cm2CIsiB5HdX2UKGgGR7/XrleWv8qGaAdLBGgIR0Cm19NCRfWudX2UKGgGR7/Rdszl90A+aAdLA2gIR0Cm2Nxhc7hfdX2UKGgGR7/S8P4EfT1DaAdLA2gIR0Cm2IYu9OARdX2UKGgGR7/KFFlTWGypaAdLA2gIR0Cm2DDcuanadX2UKGgGR7/PhE0BOpKjaAdLA2gIR0Cm19845tFbdX2UKGgGR7/KfLcKw6hhaAdLA2gIR0Cm2OgqNIbwdX2UKGgGR7/BnDiwSrYHaAdLAmgIR0Cm2I5jhDPXdX2UKGgGR7/Ti9IwudwvaAdLA2gIR0Cm2D7m2b5NdX2UKGgGR7+0U/OdGy5aaAdLAmgIR0Cm1+mQSzw+dX2UKGgGR7/Ahew9q1w6aAdLAmgIR0Cm2PJ71Iy1dX2UKGgGR7+7ijtXxOLzaAdLAmgIR0Cm2JiHARChdX2UKGgGR7+9NL127nPnaAdLAmgIR0Cm2PmbTc7AdX2UKGgGR7/DmYjSofjkaAdLAmgIR0Cm2J+q7yxzdX2UKGgGR7+OumrKeTV2aAdLAWgIR0Cm2P2fbsWwdX2UKGgGR7/W6iCaqjrSaAdLBGgIR0Cm1/iUornUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (676 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.1811380404047668, "std_reward": 0.06609791000592323, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-13T03:50:01.521227"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:633cf14935eb0cdbf96ecc8116507d8806b1420cbfa598a03763b56c61684121
|
3 |
+
size 2623
|