a2c-AntBulletEnv-v0 / config.json
tommytran's picture
Initial commit
3aaaded
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efeaa47ac10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efeaa47aca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efeaa47ad30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efeaa47adc0>", "_build": "<function ActorCriticPolicy._build at 0x7efeaa47ae50>", "forward": "<function ActorCriticPolicy.forward at 0x7efeaa47aee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efeaa47af70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efeaa47e040>", "_predict": "<function ActorCriticPolicy._predict at 0x7efeaa47e0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efeaa47e160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efeaa47e1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efeaa47e280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efeaa47b900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681500829361090469, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEa9iz+Wbx6/HTkgPljk7j/g5QnAfLq1Pg8h9b4L/me/dXtdP8zAKT9epR0/ZeApv4uocT9NGbG/NR+8PiMLrb3d23I/eVWZvyOCEb912cO+YhWEv35/Yj0TszFAn3dyvnoxxz7Iy8A+EMIfwIXzFz8pDrc/fyymvhvl0D4H5n8/azSbu+bs8b5Qsb8+qINFv/q+hr2IFUbANfEvPxETYL9QGJU/m9wRQAjbn76PYYY/vSooP1KCkEC+jnE//tIYPTY2g7+rXKA+79i5P+eM8j7ogCTAyMvAPhDCH8CF8xc/iMdJQCoVVT+EQ0g/eQodv+ZXwz6JE8I9g2dIPt0CiL3Ue4y/kikqvLsNC8Bc/AK9WNYOvXsCvrquTQtA9sQtPenkKb4DlTu5EGYmQO0GBD1IZx4/cWqkO5zlEMCHpsW86IAkwEb2KcAQwh/A6qXXv5674T8YNFu/0icFvmHoBkAqKkrAn7MtPzpIK79ZC4C/TrZnP9Y9lTzZaaE/N4Mbv1KQur5UVA7A0pg5Pf47/b/7k8u+TCn9v1fbPL/BDHC+Mld0vw1zbz5BXhdA4baJv3oxxz7Iy8A+MhzNPuql17+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAASneM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAibH4PQAAAACHPty/AAAAANn/1T0AAAAADR/tPwAAAAC5mLy8AAAAAIuk5z8AAAAA8SzjvQAAAAB1ufa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGOyhtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPBA2j0AAAAACbD4vwAAAACjjRG8AAAAAArO2z8AAAAA/JiQvQAAAACEg+8/AAAAAP61DT0AAAAAm5b5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJGmDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDp71I9AAAAADSv378AAAAADasRvQAAAACnuPw/AAAAALQkgTwAAAAAfAjgPwAAAACDzwG+AAAAAGg3378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/pAm3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR5ALPgAAAACrov2/AAAAAB49hTwAAAAAYV/fPwAAAAA/NAO+AAAAAEzX/z8AAAAA4KfwPQAAAACN8t2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJPHlg8bJfaMAWyUTegDjAF0lEdAm9hLCFbml3V9lChoBkdAlT+6fvnbI2gHTegDaAhHQJvZ7eZXuE51fZQoaAZHQJWWVF2FFlVoB03oA2gIR0Cb3e6PKdQPdX2UKGgGR0CVqc5wOvt/aAdN6ANoCEdAm+8kyHmA9XV9lChoBkdAk+meHnEET2gHTegDaAhHQJvxc4wRGtp1fZQoaAZHQJVLqySmqHZoB03oA2gIR0Cb8vlvIfbLdX2UKGgGR0CW3P9qDbrUaAdN6ANoCEdAm/b7XYlIE3V9lChoBkdAlL0BMrVe8mgHTegDaAhHQJwN2nIhhYx1fZQoaAZHQJYpwDq4YrJoB03oA2gIR0CcEcQY1pCbdX2UKGgGR0CUKWsNlRP5aAdN6ANoCEdAnBR4wRGtp3V9lChoBkdAlP/0HMUypWgHTegDaAhHQJwYj6vaDf51fZQoaAZHQJTPVPXTVlRoB03oA2gIR0CcKg3ZPEbYdX2UKGgGR0CWnQM0gr6MaAdN6ANoCEdAnCyBtP557nV9lChoBkdAlyeJGWldkmgHTegDaAhHQJwuL5CWu5l1fZQoaAZHQJPoOhtcfNloB03oA2gIR0CcMmt03fhudX2UKGgGR0CUSuVlf7aaaAdN6ANoCEdAnEdZUtI07HV9lChoBkdAlKsbmdRR/GgHTegDaAhHQJxLJVYISlF1fZQoaAZHQJB5RuyeI2xoB03oA2gIR0CcTclEJBw/dX2UKGgGR0CVDT1p0wJxaAdN6ANoCEdAnFNXrQgLZ3V9lChoBkdAlqOICQtBfWgHTegDaAhHQJxkA0BOpKl1fZQoaAZHQJGBygrYoRZoB03oA2gIR0CcZmG9HtngdX2UKGgGR0CVPB+PzWf9aAdN6ANoCEdAnGf63uuzQnV9lChoBkdAlFNu/5+H8GgHTegDaAhHQJxr8J0GNaR1fZQoaAZHQJMMU/SpiqhoB03oA2gIR0CcfyOMVDa5dX2UKGgGR0CRX6ois4kvaAdN6ANoCEdAnIMD987ZF3V9lChoBkdAlE9FqSHM2WgHTegDaAhHQJyFs02tMf11fZQoaAZHQJGFM/r0J4VoB03oA2gIR0CcjG76Hj6vdX2UKGgGR0CR7FLjghr4aAdN6ANoCEdAnKF8Y64lQnV9lChoBkdAlXnuLFXJYGgHTegDaAhHQJylTtpmEoR1fZQoaAZHQJPTEQ6IWP9oB03oA2gIR0Ccp/QemvW6dX2UKGgGR0CR6A1RLsa9aAdN6ANoCEdAnK57hWHUMHV9lChoBkdAlIpM8YAKfGgHTegDaAhHQJzEBYISlFd1fZQoaAZHQJB3gBjnV5NoB03oA2gIR0CcyA4hEBsAdX2UKGgGR0CQiROQyRCAaAdN6ANoCEdAnMrK5byH23V9lChoBkdAleSjv3JxN2gHTegDaAhHQJzQtWLgn+h1fZQoaAZHQJKvHrcCYC1oB03oA2gIR0Cc4hdl/YrbdX2UKGgGR0CSw93PiT+vaAdN6ANoCEdAnOSJ9qk/KXV9lChoBkdAkfywmZ3LWGgHTegDaAhHQJzmNuKoAGV1fZQoaAZHQJMIjZGrjo9oB03oA2gIR0Cc6kPWQOnVdX2UKGgGR0CW0LgwoLG8aAdN6ANoCEdAnP3H2IwdsHV9lChoBkdAlFuneSB9TmgHTegDaAhHQJ0BYJ/oaDR1fZQoaAZHQJPxS8PFvQ5oB03oA2gIR0CdA/Q7cO9WdX2UKGgGR0CUon1yeZogaAdN6ANoCEdAnQpTrVvuPXV9lChoBkdAlm8o+4b0e2gHTegDaAhHQJ0cDO1OTJR1fZQoaAZHQJQRN8VpKz1oB03oA2gIR0CdHmTt9hJAdX2UKGgGR0CVGKxG2CumaAdN6ANoCEdAnR/4tQKrrHV9lChoBkdAlMAwljVhC2gHTegDaAhHQJ0j44Ia99N1fZQoaAZHQJVZGii7Ci1oB03oA2gIR0CdNXJUo8ZDdX2UKGgGR0CS7zKoybhFaAdN6ANoCEdAnTk4AOrhi3V9lChoBkdAllJ8E/0NBmgHTegDaAhHQJ07ve40/GF1fZQoaAZHQJWjfIhhYvFoB03oA2gIR0CdQhCUHIIXdX2UKGgGR0CVMe0eEIw/aAdN6ANoCEdAnVboraufVnV9lChoBkdAloT6gh8pkWgHTegDaAhHQJ1ZOpfhMrV1fZQoaAZHQJYr3Ytg8bJoB03oA2gIR0CdWsqABkqddX2UKGgGR0CWv4v2oNutaAdN6ANoCEdAnV6vDcdo4HV9lChoBkdAlZuT1TR6W2gHTegDaAhHQJ1vhbor4Fl1fZQoaAZHQJcncUzsQd1oB03oA2gIR0CdcdpeNT99dX2UKGgGR0CT4ny5qdpZaAdN6ANoCEdAnXOb6k6903V9lChoBkdAlIxgG4ZuRGgHTegDaAhHQJ15uearmyR1fZQoaAZHQJZ8BOEdvKloB03oA2gIR0CdkWBq9GqhdX2UKGgGR0CV8urY5DJEaAdN6ANoCEdAnZPWlEZzgnV9lChoBkdAlLlchX8wYmgHTegDaAhHQJ2VaqFRHgB1fZQoaAZHQJaXPxYq5LBoB03oA2gIR0CdmW4oJAt4dX2UKGgGR0CVPT9TxXnyaAdN6ANoCEdAnav7rcCYC3V9lChoBkdAl1ntEXtSh2gHTegDaAhHQJ2vc1ejVQR1fZQoaAZHQJVM4b2lEZ1oB03oA2gIR0CdsedfLLZBdX2UKGgGR0CTcKEMb3oLaAdN6ANoCEdAnbn/Ho5ggHV9lChoBkdAlgi4IF/x2GgHTegDaAhHQJ3US+vhZQp1fZQoaAZHQJYPgLRa5gBoB03oA2gIR0Cd1tHbRF7VdX2UKGgGR0CU3eJtzjm0aAdN6ANoCEdAndhy08eS0XV9lChoBkdAl7B0cbR4QmgHTegDaAhHQJ3cgHryDqZ1fZQoaAZHQJeknyPMjeNoB03oA2gIR0Cd7gU9pyp8dX2UKGgGR0CUEMdYGMXKaAdN6ANoCEdAnfCJyMkyDnV9lChoBkdAlPUzkMkQgGgHTegDaAhHQJ3yIOuq3mV1fZQoaAZHQJMPBnQID5loB03oA2gIR0Cd9h0KZ2IPdX2UKGgGR0CUoNhJAdGRaAdN6ANoCEdAng8izkZJkHV9lChoBkdAk+4xtYSxq2gHTegDaAhHQJ4RdpHqeK91fZQoaAZHQJEgwp+c6NloB03oA2gIR0CeEwpN9H+ZdX2UKGgGR0CUSOO7g88taAdN6ANoCEdAnhba5kK/mHV9lChoBkdAjs2t8/lhgGgHTegDaAhHQJ4ntYJVsDZ1fZQoaAZHQIvVHexfOUtoB03oA2gIR0CeKgA3kxREdX2UKGgGR0CNRopkwvg4aAdN6ANoCEdAniuYaUA1enV9lChoBkdAkOuihN/OMWgHTegDaAhHQJ4vlYeT3Zh1fZQoaAZHQJGkf0PH1e1oB03oA2gIR0CeRpMMqjJudX2UKGgGR0CUCUX8O09haAdN6ANoCEdAnkqh+4LCvXV9lChoBkdAkv4UsFt8/mgHTegDaAhHQJ5NT/Ot4iZ1fZQoaAZHQJIek1CPZIxoB03oA2gIR0CeUaOk+HJtdX2UKGgGR0CTC/HbRF7VaAdN6ANoCEdAnmM+1fE4vXV9lChoBkdAlb7lNYbKimgHTegDaAhHQJ5llbfP5YZ1fZQoaAZHQJOcEsTWXkZoB03oA2gIR0CeZzLh73PBdX2UKGgGR0CVzqnPE87qaAdN6ANoCEdAnmts495hSnV9lChoBkdAk6QxplBhQWgHTegDaAhHQJ5/q3lS0jV1fZQoaAZHQJWtCzAvcrRoB03oA2gIR0Ceg5U3GXHBdX2UKGgGR0CVMT62v0ROaAdN6ANoCEdAnoY/qkdmx3V9lChoBkdAlUZA3PzFuWgHTegDaAhHQJ6MRXIU8FJ1fZQoaAZHQJYQpNHpbEBoB03oA2gIR0CenbRO1v2odX2UKGgGR0CXIKbrC3w1aAdN6ANoCEdAnqAlxGUfP3V9lChoBkdAln/BZ2ZAp2gHTegDaAhHQJ6hwe+23KB1fZQoaAZHQJZfHQqqfe1oB03oA2gIR0CepcbyYoiLdX2UKGgGR0CWLJPGyX2NaAdN6ANoCEdAnrkPio86m3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31474, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}