--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT-infoExtract-v2 results: [] --- # distilBERT-infoExtract-v2 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0704 - Precision: 0.9146 - Recall: 0.9350 - F1: 0.9247 - Accuracy: 0.9831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0989 | 1.0 | 1756 | 0.0877 | 0.8808 | 0.9152 | 0.8977 | 0.9748 | | 0.0498 | 2.0 | 3512 | 0.0697 | 0.9027 | 0.9286 | 0.9155 | 0.9814 | | 0.0328 | 3.0 | 5268 | 0.0704 | 0.9146 | 0.9350 | 0.9247 | 0.9831 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2