Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```python
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
from transformers import ViTModel, ViTConfig
|
6 |
+
from safetensors.torch import load_file as safetensors_load_file
|
7 |
+
|
8 |
+
# Define a transform to convert PIL images to tensors
|
9 |
+
transform = transforms.Compose([
|
10 |
+
transforms.Resize((224, 224)),
|
11 |
+
transforms.ToTensor(),
|
12 |
+
])
|
13 |
+
|
14 |
+
class ViTSalesModel(nn.Module):
|
15 |
+
def __init__(self):
|
16 |
+
super(ViTSalesModel, self).__init__()
|
17 |
+
self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224')
|
18 |
+
self.classifier = nn.Linear(self.vit.config.hidden_size, 1)
|
19 |
+
|
20 |
+
def forward(self, pixel_values, labels=None):
|
21 |
+
outputs = self.vit(pixel_values=pixel_values)
|
22 |
+
cls_output = outputs.last_hidden_state[:, 0, :] # Take the [CLS] token
|
23 |
+
sales = self.classifier(cls_output)
|
24 |
+
loss = None
|
25 |
+
if labels is not None:
|
26 |
+
loss_fct = nn.MSELoss()
|
27 |
+
loss = loss_fct(sales.view(-1), labels.view(-1))
|
28 |
+
return (loss, sales) if loss is not None else sales
|
29 |
+
|
30 |
+
model = ViTSalesModel()
|
31 |
+
|
32 |
+
# Load the saved model checkpoint
|
33 |
+
checkpoint_path = "/content/results/checkpoint-940/model.safetensors"
|
34 |
+
state_dict = safetensors_load_file(checkpoint_path)
|
35 |
+
model.load_state_dict(state_dict)
|
36 |
+
model.eval()
|
37 |
+
|
38 |
+
# Maximum sales value for de-normalization (from training)
|
39 |
+
max_sales_value = 100000 # Replace with the actual max sales value used during training
|
40 |
+
|
41 |
+
def predict_sales(image_path):
|
42 |
+
# Load and preprocess the image
|
43 |
+
image = Image.open(image_path).convert('RGB')
|
44 |
+
image = transform(image).unsqueeze(0) # Add batch dimension
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
# Run the model
|
48 |
+
prediction = model(image)
|
49 |
+
|
50 |
+
print(prediction)
|
51 |
+
# De-normalize the prediction
|
52 |
+
sales_prediction = prediction.item() * max_sales_value
|
53 |
+
return sales_prediction
|
54 |
+
|
55 |
+
# Example usage
|
56 |
+
image_path = "/content/0000.png"
|
57 |
+
predicted_sales = predict_sales(image_path)
|
58 |
+
print(f"Predicted sales: {predicted_sales}")
|
59 |
+
|
60 |
+
```
|