File size: 2,594 Bytes
e041c32 ea35ac1 9731209 e041c32 73f3f96 e041c32 8fb6208 7b8f3a1 d2e3683 9c120c6 d2e3683 9c120c6 d2e3683 9c120c6 d2e3683 3826eb6 7b8f3a1 4c30222 8e734b6 4c30222 8e734b6 4c30222 8e734b6 e041c32 2b30b01 e041c32 2b30b01 e041c32 9731209 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
widget:
- src: >-
https://cdn.discordapp.com/attachments/1120417968032063538/1191101288428097727/1.jpg?ex=65a43684&is=6591c184&hm=aed9f3278325ea30e30557e201adcfc43ce2ce77f2218b5f8f232a26b4ac2985&
- src: >-
https://cdn.discordapp.com/attachments/1120417968032063538/1191101301698867260/2.jpg?ex=65a43687&is=6591c187&hm=dee873150a2910177be30e5141f008b70ba7f55266e1e8725b422bfe0e6213f8&
metrics:
- accuracy
model-index:
- name: vogue-fashion-collection-15
results: []
pipeline_tag: image-classification
---
# vogue-fashion-collection-15
## Model description
This model classifies an image into a fashion collection. It is trained on the [tonyassi/vogue-runway-top15-512px](https://huggingface.co/datasets/tonyassi/vogue-runway-top15-512px) dataset and fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k).
Try the [demo](https://huggingface.co/spaces/tonyassi/which-fashion-collection).
## Dataset description
[tonyassi/vogue-runway-top15-512px](https://huggingface.co/datasets/tonyassi/vogue-runway-top15-512px)
- 15 fashion houses
- 1679 collections
- 87,547 images
### How to use
```python
from transformers import pipeline
# Initialize image classification pipeline
pipe = pipeline("image-classification", model="tonyassi/vogue-fashion-collection-15")
# Perform classification
result = pipe('image.png')
# Print results
print(result)
```
## Examples
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/YWz7ZLk2Oa0xCvuUqVX3O.jpeg)
**fendi,spring 2023 couture**
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/qRBLjPrbCt0EX181pmu7K.jpeg)
**gucci,spring 2017 ready to wear**
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/Ghd9kUxoCOyOeyJNfUtnh.jpeg)
**prada,fall 2018 ready to wear**
## Training and evaluation data
It achieves the following results on the evaluation set:
- Loss: 0.1795
- Accuracy: 0.9454
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0 |