File size: 2,594 Bytes
e041c32
 
ea35ac1
 
 
 
 
 
 
 
 
 
 
 
 
9731209
e041c32
 
 
 
 
73f3f96
e041c32
8fb6208
 
7b8f3a1
 
 
 
 
 
d2e3683
 
 
 
9c120c6
d2e3683
9c120c6
 
d2e3683
 
9c120c6
d2e3683
3826eb6
7b8f3a1
4c30222
 
8e734b6
 
4c30222
8e734b6
 
4c30222
8e734b6
e041c32
2b30b01
 
 
e041c32
 
 
 
 
 
 
 
 
 
 
 
 
2b30b01
e041c32
 
 
 
 
 
9731209
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
widget:
- src: >-
    https://cdn.discordapp.com/attachments/1120417968032063538/1191101288428097727/1.jpg?ex=65a43684&is=6591c184&hm=aed9f3278325ea30e30557e201adcfc43ce2ce77f2218b5f8f232a26b4ac2985&
- src: >-
    https://cdn.discordapp.com/attachments/1120417968032063538/1191101301698867260/2.jpg?ex=65a43687&is=6591c187&hm=dee873150a2910177be30e5141f008b70ba7f55266e1e8725b422bfe0e6213f8&
metrics:
- accuracy
model-index:
- name: vogue-fashion-collection-15
  results: []
pipeline_tag: image-classification
---

# vogue-fashion-collection-15

## Model description
This model classifies an image into a fashion collection. It is trained on the [tonyassi/vogue-runway-top15-512px](https://huggingface.co/datasets/tonyassi/vogue-runway-top15-512px) dataset and fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k).

Try the [demo](https://huggingface.co/spaces/tonyassi/which-fashion-collection).

## Dataset description
[tonyassi/vogue-runway-top15-512px](https://huggingface.co/datasets/tonyassi/vogue-runway-top15-512px)
- 15 fashion houses
- 1679 collections
- 87,547 images

### How to use
```python
from transformers import pipeline

# Initialize image classification pipeline
pipe = pipeline("image-classification", model="tonyassi/vogue-fashion-collection-15")

# Perform classification
result = pipe('image.png')

# Print results
print(result)
```
## Examples
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/YWz7ZLk2Oa0xCvuUqVX3O.jpeg)
**fendi,spring 2023 couture**

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/qRBLjPrbCt0EX181pmu7K.jpeg)
**gucci,spring 2017 ready to wear**

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/Ghd9kUxoCOyOeyJNfUtnh.jpeg)
**prada,fall 2018 ready to wear**

## Training and evaluation data
It achieves the following results on the evaluation set:
- Loss: 0.1795
- Accuracy: 0.9454

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0