|
import os |
|
import torch |
|
from torchvision import transforms |
|
from PIL import Image |
|
import io |
|
|
|
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
MODEL_FILENAME = "model.pt" |
|
MODEL_PATH = os.path.join(BASE_DIR, MODEL_FILENAME) |
|
|
|
NUM_CLASSES = 4 |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def load_model(model_path, num_classes): |
|
from torchvision.models.detection import fasterrcnn_resnet50_fpn |
|
model = fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes) |
|
checkpoint = torch.load(model_path, map_location=DEVICE) |
|
model.load_state_dict(checkpoint["model_state_dict"]) |
|
model.to(DEVICE) |
|
model.eval() |
|
return model |
|
|
|
model = load_model(MODEL_PATH, NUM_CLASSES) |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((640, 640)), |
|
transforms.ToTensor(), |
|
]) |
|
|
|
def detect_objects(image_bytes): |
|
image = Image.open(io.BytesIO(image_bytes)).convert("RGB") |
|
input_tensor = transform(image).unsqueeze(0).to(DEVICE) |
|
|
|
with torch.no_grad(): |
|
predictions = model(input_tensor) |
|
|
|
boxes = predictions[0]["boxes"].cpu().tolist() |
|
labels = predictions[0]["labels"].cpu().tolist() |
|
scores = predictions[0]["scores"].cpu().tolist() |
|
|
|
confidence_threshold = 0.5 |
|
results = [ |
|
{"box": box, "label": label, "score": score} |
|
for box, label, score in zip(boxes, labels, scores) |
|
if score > confidence_threshold |
|
] |
|
|
|
return {"predictions": results} |
|
|
|
def inference(payload): |
|
import base64 |
|
try: |
|
if "image" not in payload: |
|
return {"error": "No image provided. Please send a Base64-encoded image."} |
|
|
|
image_bytes = base64.b64decode(payload["image"]) |
|
|
|
results = detect_objects(image_bytes) |
|
return results |
|
except Exception as e: |
|
return {"error": str(e)} |