torinriley
commited on
Upload 2 files
Browse files
demo.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
from model import get_model
|
4 |
+
from torchvision.transforms import ToTensor
|
5 |
+
|
6 |
+
num_classes = 4
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
model = get_model(num_classes).to(device)
|
9 |
+
|
10 |
+
checkpoint_path = "models/model.pt"
|
11 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
12 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
CONFIDENCE_THRESHOLD = 0.5
|
16 |
+
|
17 |
+
video_capture = cv2.VideoCapture(0)
|
18 |
+
if not video_capture.isOpened():
|
19 |
+
print("Error: Could not open video device.")
|
20 |
+
exit()
|
21 |
+
|
22 |
+
def preprocess_frame(frame):
|
23 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
24 |
+
frame_tensor = ToTensor()(frame_rgb).unsqueeze(0).to(device)
|
25 |
+
return frame_tensor
|
26 |
+
|
27 |
+
def draw_predictions(frame, predictions):
|
28 |
+
boxes = predictions[0]["boxes"]
|
29 |
+
labels = predictions[0]["labels"]
|
30 |
+
scores = predictions[0]["scores"]
|
31 |
+
|
32 |
+
label_map = {1: "yellow", 2: "red", 3: "blue"}
|
33 |
+
|
34 |
+
for box, label, score in zip(boxes, labels, scores):
|
35 |
+
if score >= CONFIDENCE_THRESHOLD:
|
36 |
+
x1, y1, x2, y2 = map(int, box)
|
37 |
+
|
38 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
39 |
+
|
40 |
+
color_name = label_map.get(label.item(), "unknown")
|
41 |
+
label_text = f"{color_name} game piece"
|
42 |
+
cv2.putText(frame, label_text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
43 |
+
|
44 |
+
return frame
|
45 |
+
|
46 |
+
print("Starting video stream... Press 'q' to quit.")
|
47 |
+
while video_capture.isOpened():
|
48 |
+
ret, frame = video_capture.read()
|
49 |
+
if not ret:
|
50 |
+
break
|
51 |
+
|
52 |
+
frame_tensor = preprocess_frame(frame)
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
predictions = model(frame_tensor)
|
56 |
+
|
57 |
+
frame = draw_predictions(frame, predictions)
|
58 |
+
|
59 |
+
cv2.imshow("Real-Time Object Detection", frame)
|
60 |
+
|
61 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
62 |
+
break
|
63 |
+
|
64 |
+
video_capture.release()
|
65 |
+
cv2.destroyAllWindows()
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48fc2815a72c09a0fead45b7d6607c2945136ad4d9b2768a1cf9c57e78448214
|
3 |
+
size 330136991
|