import torch from torchvision import transforms from PIL import Image import io MODEL_PATH = "model_checkpoint.pt" NUM_CLASSES = 4 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Load Faster R-CNN model def load_model(model_path, num_classes): from torchvision.models.detection import fasterrcnn_resnet50_fpn model = fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes) checkpoint = torch.load(model_path, map_location=DEVICE) model.load_state_dict(checkpoint["model_state_dict"]) model.to(DEVICE) model.eval() return model transform = transforms.Compose([ transforms.Resize((640, 640)), transforms.ToTensor(), ]) model = load_model(MODEL_PATH, NUM_CLASSES) def detect_objects(image_bytes): image = Image.open(io.BytesIO(image_bytes)).convert("RGB") input_tensor = transform(image).unsqueeze(0).to(DEVICE) with torch.no_grad(): predictions = model(input_tensor) boxes = predictions[0]["boxes"].cpu().tolist() labels = predictions[0]["labels"].cpu().tolist() scores = predictions[0]["scores"].cpu().tolist() confidence_threshold = 0.5 results = [ {"box": box, "label": label, "score": score} for box, label, score in zip(boxes, labels, scores) if score > confidence_threshold ] return {"predictions": results} def inference(payload): try: if "image" not in payload: return {"error": "No image provided. Please send an image."} image_bytes = payload["image"].encode("latin1") results = detect_objects(image_bytes) return results except Exception as e: return {"error": str(e)}