|
import torch |
|
import torch.nn as nn |
|
import math |
|
|
|
class LayerNormalization(nn.Module): |
|
def __init__(self, features: int, eps: float = 1e-6) -> None: |
|
super().__init__() |
|
self.eps = eps |
|
self.alpha = nn.Parameter(torch.ones(features)) |
|
self.bias = nn.Parameter(torch.zeros(features)) |
|
|
|
def forward(self, x): |
|
mean = x.mean(dim=-1, keepdim=True) |
|
std = x.std(dim=-1, keepdim=True) |
|
return self.alpha * (x - mean) / (std + self.eps) + self.bias |
|
|
|
class FeedForwardBlock(nn.Module): |
|
def __init__(self, d_model: int, d_ff: int, dropout: float) -> None: |
|
super().__init__() |
|
self.fc1 = nn.Linear(d_model, d_ff) |
|
self.dropout = nn.Dropout(dropout) |
|
self.fc2 = nn.Linear(d_ff, d_model) |
|
|
|
def forward(self, x): |
|
return self.fc2(self.dropout(torch.relu(self.fc1(x)))) |
|
|
|
class InputEmbeddings(nn.Module): |
|
def __init__(self, d_model: int, vocab_size: int) -> None: |
|
super().__init__() |
|
self.d_model = d_model |
|
self.embedding = nn.Embedding(vocab_size, d_model) |
|
|
|
def forward(self, x): |
|
return self.embedding(x) * math.sqrt(self.d_model) |
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model: int, seq_len: int, dropout: float) -> None: |
|
super().__init__() |
|
self.dropout = nn.Dropout(dropout) |
|
pe = torch.zeros(seq_len, d_model) |
|
position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
x = x + self.pe[:, :x.shape[1], :].requires_grad_(False) |
|
return self.dropout(x) |
|
|
|
class ResidualConnection(nn.Module): |
|
def __init__(self, features: int, dropout: float) -> None: |
|
super().__init__() |
|
self.dropout = nn.Dropout(dropout) |
|
self.norm = LayerNormalization(features) |
|
|
|
def forward(self, x, sublayer): |
|
return x + self.dropout(sublayer(self.norm(x))) |
|
|
|
class MultiHeadAttentionBlock(nn.Module): |
|
def __init__(self, d_model: int, num_heads: int, dropout: float) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.d_k = d_model // num_heads |
|
self.w_q = nn.Linear(d_model, d_model, bias=False) |
|
self.w_k = nn.Linear(d_model, d_model, bias=False) |
|
self.w_v = nn.Linear(d_model, d_model, bias=False) |
|
self.w_o = nn.Linear(d_model, d_model, bias=False) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
@staticmethod |
|
def attention(query, key, value, mask, dropout: nn.Dropout): |
|
d_k = query.shape[-1] |
|
scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k) |
|
if mask is not None: |
|
scores.masked_fill_(mask == 0, -1e9) |
|
scores = scores.softmax(dim=-1) |
|
if dropout is not None: |
|
scores = dropout(scores) |
|
return scores @ value, scores |
|
|
|
def forward(self, q, k, v, mask): |
|
query = self.w_q(q) |
|
key = self.w_k(k) |
|
value = self.w_v(v) |
|
query = query.view(query.shape[0], query.shape[1], self.num_heads, self.d_k).transpose(1, 2) |
|
key = key.view(key.shape[0], key.shape[1], self.num_heads, self.d_k).transpose(1, 2) |
|
value = value.view(value.shape[0], value.shape[1], self.num_heads, self.d_k).transpose(1, 2) |
|
x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout) |
|
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.num_heads * self.d_k) |
|
return self.w_o(x) |
|
|
|
class EncoderBlock(nn.Module): |
|
def __init__(self, features: int, self_attention: MultiHeadAttentionBlock, feed_forward: FeedForwardBlock, dropout: float) -> None: |
|
super().__init__() |
|
self.self_attention = self_attention |
|
self.feed_forward = feed_forward |
|
self.residuals = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(2)]) |
|
|
|
def forward(self, x, src_mask): |
|
x = self.residuals[0](x, lambda x: self.self_attention(x, x, x, src_mask)) |
|
x = self.residuals[1](x, self.feed_forward) |
|
return x |
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, features: int, layers: nn.ModuleList) -> None: |
|
super().__init__() |
|
self.layers = layers |
|
self.norm = LayerNormalization(features) |
|
|
|
def forward(self, x, mask): |
|
for layer in self.layers: |
|
x = layer(x, mask) |
|
return self.norm(x) |
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__(self, features: int, self_attention: MultiHeadAttentionBlock, cross_attention: MultiHeadAttentionBlock, feed_forward: FeedForwardBlock, dropout: float) -> None: |
|
super().__init__() |
|
self.self_attention = self_attention |
|
self.cross_attention = cross_attention |
|
self.feed_forward = feed_forward |
|
self.residuals = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(3)]) |
|
|
|
def forward(self, x, encoder_output, src_mask, tgt_mask): |
|
x = self.residuals[0](x, lambda x: self.self_attention(x, x, x, tgt_mask)) |
|
x = self.residuals[1](x, lambda x: self.cross_attention(x, encoder_output, encoder_output, src_mask)) |
|
x = self.residuals[2](x, self.feed_forward) |
|
return x |
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, features: int, layers: nn.ModuleList) -> None: |
|
super().__init__() |
|
self.layers = layers |
|
self.norm = LayerNormalization(features) |
|
|
|
def forward(self, x, encoder_output, src_mask, tgt_mask): |
|
for layer in self.layers: |
|
x = layer(x, encoder_output, src_mask, tgt_mask) |
|
return self.norm(x) |
|
|
|
class ProjectionLayer(nn.Module): |
|
def __init__(self, d_model, vocab_size) -> None: |
|
super().__init__() |
|
self.proj = nn.Linear(d_model, vocab_size) |
|
|
|
def forward(self, x) -> None: |
|
return self.proj(x) |
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: InputEmbeddings, tgt_embed: InputEmbeddings, src_pos: PositionalEncoding, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer) -> None: |
|
super().__init__() |
|
self.encoder = encoder |
|
self.decoder = decoder |
|
self.src_embed = src_embed |
|
self.tgt_embed = tgt_embed |
|
self.src_pos = src_pos |
|
self.tgt_pos = tgt_pos |
|
self.projection_layer = projection_layer |
|
|
|
def encode(self, src, src_mask): |
|
src = self.src_embed(src) |
|
src = self.src_pos(src) |
|
return self.encoder(src, src_mask) |
|
|
|
def decode(self, encoder_output: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor): |
|
tgt = self.tgt_embed(tgt) |
|
tgt = self.tgt_pos(tgt) |
|
return self.decoder(tgt, encoder_output, src_mask, tgt_mask) |
|
|
|
def project(self, x): |
|
return self.projection_layer(x) |
|
|
|
def build_transformer(src_vocab_size: int, tgt_vocab_size: int, src_seq_len: int, tgt_seq_len: int, d_model: int = 512, num_layers: int = 6, num_heads: int = 8, dropout: float = 0.1, d_ff: int = 2048) -> Transformer: |
|
src_embed = InputEmbeddings(d_model, src_vocab_size) |
|
tgt_embed = InputEmbeddings(d_model, tgt_vocab_size) |
|
src_pos = PositionalEncoding(d_model, src_seq_len, dropout) |
|
tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout) |
|
|
|
encoder_blocks = [] |
|
for _ in range(num_layers): |
|
self_attention = MultiHeadAttentionBlock(d_model, num_heads, dropout) |
|
feed_forward = FeedForwardBlock(d_model, d_ff, dropout) |
|
encoder_block = EncoderBlock(d_model, self_attention, feed_forward, dropout) |
|
encoder_blocks.append(encoder_block) |
|
|
|
decoder_blocks = [] |
|
for _ in range(num_layers): |
|
self_attention = MultiHeadAttentionBlock(d_model, num_heads, dropout) |
|
cross_attention = MultiHeadAttentionBlock(d_model, num_heads, dropout) |
|
feed_forward = FeedForwardBlock(d_model, d_ff, dropout) |
|
decoder_block = DecoderBlock(d_model, self_attention, cross_attention, feed_forward, dropout) |
|
decoder_blocks.append(decoder_block) |
|
|
|
encoder = Encoder(d_model, nn.ModuleList(encoder_blocks)) |
|
decoder = Decoder(d_model, nn.ModuleList(decoder_blocks)) |
|
projection_layer = ProjectionLayer(d_model, tgt_vocab_size) |
|
transformer = Transformer(encoder, decoder, src_embed, tgt_embed, src_pos, tgt_pos, projection_layer) |
|
|
|
for p in transformer.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
|
|
return transformer |
|
|