import torch from typing import Dict, List, Any from tokenizers import Tokenizer import sys import os import warnings # Add the current directory to the system path to locate the model module sys.path.append(os.path.dirname(__file__)) from model import build_transformer warnings.simplefilter("ignore", category=FutureWarning) class EndpointHandler: def __init__(self, path: str = ""): """ Initialize the handler. Load the model and tokenizer. """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.device = device # Paths for weights and tokenizers self.model_weights_path = os.path.join(path, "EN-IT.pt") self.tokenizer_src_path = os.path.join(path, "tokenizer_en.json") self.tokenizer_tgt_path = os.path.join(path, "tokenizer_it.json") # Load tokenizers self.tokenizer_src = Tokenizer.from_file(self.tokenizer_src_path) self.tokenizer_tgt = Tokenizer.from_file(self.tokenizer_tgt_path) # Build the transformer model self.model = build_transformer( src_vocab_size=self.tokenizer_src.get_vocab_size(), tgt_vocab_size=self.tokenizer_tgt.get_vocab_size(), src_seq_len=350, # Match the trained model's sequence length tgt_seq_len=350, # Match the trained model's sequence length d_model=512, num_layers=6, num_heads=8, dropout=0.1, d_ff=2048 ).to(self.device) # Load the pretrained weights print(f"Loading weights from: {self.model_weights_path}") checkpoint = torch.load(self.model_weights_path, map_location=self.device) self.model.load_state_dict(checkpoint["model_state_dict"]) self.model.eval() def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ Process the incoming request and return the translation. """ try: inputs = data.get("inputs", "") if not inputs: return [{"error": "No 'inputs' provided in request"}] source = self.tokenizer_src.encode(inputs) source = torch.cat([ torch.tensor([self.tokenizer_src.token_to_id("[SOS]")], dtype=torch.int64), torch.tensor(source.ids, dtype=torch.int64), torch.tensor([self.tokenizer_src.token_to_id("[EOS]")], dtype=torch.int64), torch.tensor([self.tokenizer_src.token_to_id("[PAD]")] * (350 - len(source.ids) - 2), dtype=torch.int64) ], dim=0).to(self.device) source_mask = (source != self.tokenizer_src.token_to_id("[PAD]")).unsqueeze(0).unsqueeze(1).int().to(self.device) encoder_output = self.model.encode(source, source_mask) decoder_input = torch.empty(1, 1).fill_(self.tokenizer_tgt.token_to_id("[SOS]")).type_as(source).to(self.device) predicted_words = [] while decoder_input.size(1) < 350: decoder_mask = torch.triu( torch.ones((1, decoder_input.size(1), decoder_input.size(1))), diagonal=1 ).type(torch.int).type_as(source_mask).to(self.device) out = self.model.decode(encoder_output, source_mask, decoder_input, decoder_mask) prob = self.model.project(out[:, -1]) _, next_word = torch.max(prob, dim=1) decoder_input = torch.cat( [decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(self.device)], dim=1) decoded_word = self.tokenizer_tgt.decode([next_word.item()]) if next_word == self.tokenizer_tgt.token_to_id("[EOS]"): break predicted_words.append(decoded_word) predicted_translation = " ".join(predicted_words).replace("[EOS]", "").strip() return [{"translation": predicted_translation}] except Exception as e: return [{"error": str(e)}]