import torch import torch.nn as nn import math class LayerNormalization(nn.Module): def __init__(self, features: int, eps: float = 1e-6) -> None: super().__init__() self.eps = eps self.alpha = nn.Parameter(torch.ones(features)) self.bias = nn.Parameter(torch.zeros(features)) def forward(self, x): mean = x.mean(dim=-1, keepdim=True) std = x.std(dim=-1, keepdim=True) return self.alpha * (x - mean) / (std + self.eps) + self.bias class FeedForwardBlock(nn.Module): def __init__(self, d_model: int, d_ff: int, dropout: float) -> None: super().__init__() self.fc1 = nn.Linear(d_model, d_ff) self.dropout = nn.Dropout(dropout) self.fc2 = nn.Linear(d_ff, d_model) def forward(self, x): return self.fc2(self.dropout(torch.relu(self.fc1(x)))) class InputEmbeddings(nn.Module): def __init__(self, d_model: int, vocab_size: int) -> None: super().__init__() self.d_model = d_model self.embedding = nn.Embedding(vocab_size, d_model) def forward(self, x): return self.embedding(x) * math.sqrt(self.d_model) class PositionalEncoding(nn.Module): def __init__(self, d_model: int, seq_len: int, dropout: float) -> None: super().__init__() self.dropout = nn.Dropout(dropout) pe = torch.zeros(seq_len, d_model) position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.shape[1], :].requires_grad_(False) return self.dropout(x) class ResidualConnection(nn.Module): def __init__(self, features: int, dropout: float) -> None: super().__init__() self.dropout = nn.Dropout(dropout) self.norm = LayerNormalization(features) def forward(self, x, sublayer): return x + self.dropout(sublayer(self.norm(x))) class MultiHeadAttentionBlock(nn.Module): def __init__(self, d_model: int, num_heads: int, dropout: float) -> None: super().__init__() self.num_heads = num_heads self.d_k = d_model // num_heads self.w_q = nn.Linear(d_model, d_model, bias=False) self.w_k = nn.Linear(d_model, d_model, bias=False) self.w_v = nn.Linear(d_model, d_model, bias=False) self.w_o = nn.Linear(d_model, d_model, bias=False) self.dropout = nn.Dropout(dropout) @staticmethod def attention(query, key, value, mask, dropout: nn.Dropout): d_k = query.shape[-1] scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores.masked_fill_(mask == 0, -1e9) scores = scores.softmax(dim=-1) if dropout is not None: scores = dropout(scores) return scores @ value, scores def forward(self, q, k, v, mask): query = self.w_q(q) key = self.w_k(k) value = self.w_v(v) query = query.view(query.shape[0], query.shape[1], self.num_heads, self.d_k).transpose(1, 2) key = key.view(key.shape[0], key.shape[1], self.num_heads, self.d_k).transpose(1, 2) value = value.view(value.shape[0], value.shape[1], self.num_heads, self.d_k).transpose(1, 2) x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout) x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.num_heads * self.d_k) return self.w_o(x) class EncoderBlock(nn.Module): def __init__(self, features: int, self_attention: MultiHeadAttentionBlock, feed_forward: FeedForwardBlock, dropout: float) -> None: super().__init__() self.self_attention = self_attention self.feed_forward = feed_forward self.residuals = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(2)]) def forward(self, x, src_mask): x = self.residuals[0](x, lambda x: self.self_attention(x, x, x, src_mask)) x = self.residuals[1](x, self.feed_forward) return x class Encoder(nn.Module): def __init__(self, features: int, layers: nn.ModuleList) -> None: super().__init__() self.layers = layers self.norm = LayerNormalization(features) def forward(self, x, mask): for layer in self.layers: x = layer(x, mask) return self.norm(x) class DecoderBlock(nn.Module): def __init__(self, features: int, self_attention: MultiHeadAttentionBlock, cross_attention: MultiHeadAttentionBlock, feed_forward: FeedForwardBlock, dropout: float) -> None: super().__init__() self.self_attention = self_attention self.cross_attention = cross_attention self.feed_forward = feed_forward self.residuals = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(3)]) def forward(self, x, encoder_output, src_mask, tgt_mask): x = self.residuals[0](x, lambda x: self.self_attention(x, x, x, tgt_mask)) x = self.residuals[1](x, lambda x: self.cross_attention(x, encoder_output, encoder_output, src_mask)) x = self.residuals[2](x, self.feed_forward) return x class Decoder(nn.Module): def __init__(self, features: int, layers: nn.ModuleList) -> None: super().__init__() self.layers = layers self.norm = LayerNormalization(features) def forward(self, x, encoder_output, src_mask, tgt_mask): for layer in self.layers: x = layer(x, encoder_output, src_mask, tgt_mask) return self.norm(x) class ProjectionLayer(nn.Module): def __init__(self, d_model, vocab_size) -> None: super().__init__() self.proj = nn.Linear(d_model, vocab_size) def forward(self, x) -> None: return self.proj(x) class Transformer(nn.Module): def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: InputEmbeddings, tgt_embed: InputEmbeddings, src_pos: PositionalEncoding, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer) -> None: super().__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.src_pos = src_pos self.tgt_pos = tgt_pos self.projection_layer = projection_layer def encode(self, src, src_mask): src = self.src_embed(src) src = self.src_pos(src) return self.encoder(src, src_mask) def decode(self, encoder_output: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor): tgt = self.tgt_embed(tgt) tgt = self.tgt_pos(tgt) return self.decoder(tgt, encoder_output, src_mask, tgt_mask) def project(self, x): return self.projection_layer(x) def build_transformer(src_vocab_size: int, tgt_vocab_size: int, src_seq_len: int, tgt_seq_len: int, d_model: int = 512, num_layers: int = 6, num_heads: int = 8, dropout: float = 0.1, d_ff: int = 2048) -> Transformer: src_embed = InputEmbeddings(d_model, src_vocab_size) tgt_embed = InputEmbeddings(d_model, tgt_vocab_size) src_pos = PositionalEncoding(d_model, src_seq_len, dropout) tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout) encoder_blocks = [] for _ in range(num_layers): self_attention = MultiHeadAttentionBlock(d_model, num_heads, dropout) feed_forward = FeedForwardBlock(d_model, d_ff, dropout) encoder_block = EncoderBlock(d_model, self_attention, feed_forward, dropout) encoder_blocks.append(encoder_block) decoder_blocks = [] for _ in range(num_layers): self_attention = MultiHeadAttentionBlock(d_model, num_heads, dropout) cross_attention = MultiHeadAttentionBlock(d_model, num_heads, dropout) feed_forward = FeedForwardBlock(d_model, d_ff, dropout) decoder_block = DecoderBlock(d_model, self_attention, cross_attention, feed_forward, dropout) decoder_blocks.append(decoder_block) encoder = Encoder(d_model, nn.ModuleList(encoder_blocks)) decoder = Decoder(d_model, nn.ModuleList(decoder_blocks)) projection_layer = ProjectionLayer(d_model, tgt_vocab_size) transformer = Transformer(encoder, decoder, src_embed, tgt_embed, src_pos, tgt_pos, projection_layer) for p in transformer.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return transformer