import torch import torch.nn as nn import torchvision.transforms as T import torchvision.datasets as datasets from torch.utils.data import DataLoader from tqdm import tqdm from torchvision.models import resnet18 class SSLModel(nn.Module): def __init__(self, backbone, projection_dim=128): super(SSLModel, self).__init__() self.backbone = backbone self.projection_head = nn.Sequential( nn.Linear(backbone.fc.in_features, 512), nn.ReLU(), nn.Linear(512, projection_dim) ) self.backbone.fc = nn.Identity() def forward(self, x): features = self.backbone(x) projections = self.projection_head(features) return projections def contrastive_loss(z_i, z_j, temperature=0.5): batch_size = z_i.shape[0] # Concatenate both views z = torch.cat([z_i, z_j], dim=0) # (2 * batch_size, projection_dim) # Similarity matrix computation (dot product normalized by temperature) sim_matrix = torch.mm(z, z.T) / temperature # (2 * batch_size, 2 * batch_size) sim_matrix -= torch.max(sim_matrix, dim=1, keepdim=True)[0] # Mask out self-similarity mask = torch.eye(sim_matrix.size(0), device=sim_matrix.device).bool() sim_matrix = sim_matrix.masked_fill(mask, -float("inf")) # Extract positive similarities (z_i, z_j) and (z_j, z_i) pos_sim = torch.cat([ torch.diag(sim_matrix, sim_matrix.size(0) // 2), torch.diag(sim_matrix, -sim_matrix.size(0) // 2) ]) loss = -torch.log(torch.exp(pos_sim) / torch.sum(torch.exp(sim_matrix), dim=1)) return loss.mean() if __name__ == "__main__": transform = T.Compose([ T.RandomResizedCrop(32), T.RandomHorizontalFlip(), T.ColorJitter(0.4, 0.4, 0.4, 0.1), T.RandomGrayscale(p=0.2), T.GaussianBlur(kernel_size=3), T.ToTensor(), T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # Normalize to [-1, 1] ]) # Load CIFAR-10 dataset train_dataset = datasets.CIFAR10(root="./data", train=True, transform=transform, download=True) train_loader = DataLoader( train_dataset, batch_size=256, shuffle=True, pin_memory=True, num_workers=4 ) model = SSLModel(resnet18(pretrained=False)).to(device := torch.device("cuda" if torch.cuda.is_available() else "cpu")) optimizer = torch.optim.Adam(model.parameters(), lr=3e-4, weight_decay=1e-4) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10) # Training loop model.train() for epoch in range(10): epoch_loss = 0 progress_bar = tqdm(train_loader, desc=f"Epoch {epoch + 1}/10", unit="batch") for batch in progress_bar: imgs, _ = batch imgs = imgs.to(device, non_blocking=True) # Create two augmented views z_i = model(imgs) z_j = model(imgs) # Compute contrastive loss try: loss = contrastive_loss(z_i, z_j) except Exception as e: print(f"Loss computation failed: {e}") continue optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() epoch_loss += loss.item() progress_bar.set_postfix(loss=f"{loss.item():.4f}") scheduler.step() print(f"Epoch {epoch + 1}, Average Loss: {epoch_loss / len(train_loader):.4f}") # Save checkpoint torch.save({ "epoch": epoch, "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), }, f"ssl_checkpoint_epoch_{epoch + 1}.pth") print(f"Model saved to ssl_checkpoint_epoch_{epoch + 1}.pth")