--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert_finetuned_ner_a results: [] --- # bert_finetuned_ner_a This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1142 - Precision: 0.8979 - Recall: 0.9222 - F1: 0.9099 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0369 | 1.0 | 32820 | 0.0649 | 0.8974 | 0.9037 | 0.9005 | 0.9772 | | 0.015 | 2.0 | 65640 | 0.0902 | 0.9130 | 0.9055 | 0.9092 | 0.9777 | | 0.0057 | 3.0 | 98460 | 0.1142 | 0.8979 | 0.9222 | 0.9099 | 0.9774 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0