--- license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer metrics: - recall - precision model-index: - name: longformer-8bitadam-2048-main results: [] --- # longformer-8bitadam-2048-main This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0103 - Recall: 0.9643 - Precision: 0.9643 - F5: 0.9643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Precision | F5 | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 0.0015 | 1.0 | 100 | 0.0197 | 1.0 | 0.9032 | 0.9959 | | 0.0012 | 2.0 | 200 | 0.0179 | 0.9643 | 0.9643 | 0.9643 | | 0.0008 | 3.0 | 300 | 0.0103 | 0.9643 | 0.9643 | 0.9643 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2