torwayfarer commited on
Commit
842181c
1 Parent(s): 40aef90

Model save

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: unsloth/Qwen2.5-1.5B-Instruct
5
+ tags:
6
+ - unsloth
7
+ - trl
8
+ - sft
9
+ - generated_from_trainer
10
+ model-index:
11
+ - name: unsloth-gemma-glaive-function-calling
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mikhail_bykov-quantumone-consulting/qwen_8b_work/runs/hy3hak2b)
19
+ # unsloth-gemma-glaive-function-calling
20
+
21
+ This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct) on an unknown dataset.
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0002
41
+ - train_batch_size: 2
42
+ - eval_batch_size: 8
43
+ - seed: 3407
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 8
46
+ - optimizer: Use adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 5
49
+ - training_steps: 60
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Framework versions
53
+
54
+ - PEFT 0.14.0
55
+ - Transformers 4.46.3
56
+ - Pytorch 2.5.1+cu124
57
+ - Datasets 3.2.0
58
+ - Tokenizers 0.20.3