---
license: cc-by-nc-4.0
language:
- ja
pipeline_tag: image-to-text
tags:
- vision
- image-captioning
- VQA
---
# Chat-Vector-LLaVA-v1.5-7b-JA Model Card
## Model detail
**Model type:**
Chat-Vector-LLaVA-v1.5-7b-JA is a vision-language model that can converse about input images in Japanese.
This model was created by adding and subtracting the weights of the [llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b), [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf), and [ELYZA-japanese-Llama-2-7b](https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b) models using the Chat Vector method as follows.
```
ELYZA-japanese-Llama-2-7b + (llava-v1.5-7b - Llama-2-7b-hf)
```
Chat-Vector-LLaVA-v1.5-7b-JAは、入力画像について日本語で会話できるvision-language modelです。
このモデルはChat Vectorの手法で[llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b)と[Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)と[ELYZA-japanese-Llama-2-7b](https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b)のモデルの重みを以下の通り加減算することで作成しました。
```
ELYZA-japanese-Llama-2-7b + (llava-v1.5-7b - Llama-2-7b-hf)
```
**Comparing VLMs**
|Model|JA-VG-VQA-500
(ROUGE-L)|JA-VLM-Bench-In-the-Wild
(ROUGE-L)|Heron-Bench(Detail)|Heron-Bench(Conv)|Heron-Bench(Complex)|Heron-Bench(Average)
|-|-|-|-|-|-|-|
|[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm)|-|40.50|25.15|51.23|37.84|38.07|
|[EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B)|**19.70**|**51.25**|50.31|44.42|40.47|45.07|
|[Heron BLIP Japanese StableLM Base 7B llava-620k](https://huggingface.co/turing-motors/heron-chat-blip-ja-stablelm-base-7b-v1-llava-620k)|14.51|33.26|49.09|41.51|45.72|45.44|
|[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|15.18|37.82|42.77|**54.20**|43.53|46.83|
|[llava-jp-1.3b-v1.0-620k](https://huggingface.co/toshi456/llava-jp-1.3b-v1.0-620k)|12.69|44.58|51.21|41.05|45.95|44.84|
|[llava-jp-1.3b-v1.1](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1)|13.33|44.40|50.00|51.83|**48.98**|**50.39**|
|[chat-vector-llava-v1.5-7b-ja](https://huggingface.co/toshi456/chat-vector-llava-v1.5-7b-ja)|18.64|42.23|**53.61**|44.36|44.48|46.10|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/630af71ffaaea618ebc973db/jSW9RYPccrxaqrxntwtUb.png)
## How to use the model
**1. Download dependencies**
```
git clone https://github.com/tosiyuki/vlm-chat-vector-ja.git
```
**2. Inference**
```python
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
from llava.mm_utils import tokenizer_image_token, process_images
if __name__ == "__main__":
model_path = 'toshi456/chat-vector-llava-v1.5-7b-ja'
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model = LlavaLlamaForCausalLM.from_pretrained(
model_path,
device_map=device,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch.float16,
).eval()
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1024,
padding_side="right",
use_fast=False,
)
model.get_model().vision_tower.load_model()
model = model.to(device)
eos_token_id_list = [
tokenizer.eos_token_id,
tokenizer.bos_token_id,
]
# image pre-process
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
if not isinstance(image, list):
image = [image]
image_tensor = process_images(image, model.get_model().vision_tower.image_processor, model.config)
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
# create prompt
# ユーザー: \n{prompt}
conv_mode = "llava_llama_2"
conv = conv_templates[conv_mode].copy()
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
# parameter
temperature = 0.0
top_p = 1.0
max_new_tokens=256
# predict
with torch.inference_mode():
model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
eos_token_id=eos_token_id_list,
)
"""猫の隣には、コンピューター(パソコン)があります。"""
```
## Acknowledgement
- [LLaVA](https://llava-vl.github.io/)
- [Chat Vector](https://arxiv.org/abs/2310.04799)
## License
cc-by-nc-4.0