--- license: creativeml-openrail-m base_model: "black-forest-labs/FLUX.1-dev" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'a cute pokemon in a city scene' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.png --- # flux-training-pocket-creature-nocrop This is a LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). The main validation prompt used during training was: ``` a cute pokemon in a city scene ``` ## Validation settings - CFG: `3.5` - CFG Rescale: `0.0` - Steps: `15` - Sampler: `None` - Seed: `42` - Resolution: `512` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 17 - Training steps: 2600 - Learning rate: 0.0001 - Effective batch size: 6 - Micro-batch size: 6 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: flow-matching - Rescaled betas zero SNR: False - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Enabled - LoRA Rank: 32 - LoRA Alpha: None - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### flux-pocket-creature-nocrop - Repeats: 0 - Total number of images: 900 - Total number of aspect buckets: 1 - Resolution: 512 px - Cropped: False - Crop style: None - Crop aspect: None ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'black-forest-labs/FLUX.1-dev' adapter_id = 'toxicwind/flux-training-pocket-creature-nocrop' pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.load_lora_weights(adapter_id) prompt = "a cute pokemon in a city scene" pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, num_inference_steps=15, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=512, height=512, guidance_scale=3.5, ).images[0] image.save("output.png", format="PNG") ```