traintogpb commited on
Commit
945d9c8
1 Parent(s): 8fad968

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -196
README.md CHANGED
@@ -9,202 +9,68 @@ language:
9
  - ko
10
  pipeline_tag: translation
11
  ---
12
-
13
- # Model Card for Model ID
14
-
15
- <!-- Provide a quick summary of what the model is/does. -->
16
-
17
-
18
-
19
- ## Model Details
20
-
21
- ### Model Description
22
-
23
- <!-- Provide a longer summary of what this model is. -->
24
-
25
-
26
-
27
- - **Developed by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Model type:** [More Information Needed]
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** [More Information Needed]
33
- - **Finetuned from model [optional]:** [More Information Needed]
34
-
35
- ### Model Sources [optional]
36
-
37
- <!-- Provide the basic links for the model. -->
38
-
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
-
43
- ## Uses
44
-
45
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
-
47
- ### Direct Use
48
-
49
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
-
51
- [More Information Needed]
52
-
53
- ### Downstream Use [optional]
54
-
55
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
-
57
- [More Information Needed]
58
-
59
- ### Out-of-Scope Use
60
-
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
-
63
- [More Information Needed]
64
-
65
- ## Bias, Risks, and Limitations
66
-
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
-
69
- [More Information Needed]
70
-
71
- ### Recommendations
72
-
73
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
-
75
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
-
77
- ## How to Get Started with the Model
78
-
79
- Use the code below to get started with the model.
80
-
81
- [More Information Needed]
82
-
83
- ## Training Details
84
-
85
- ### Training Data
86
-
87
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
-
89
- [More Information Needed]
90
-
91
- ### Training Procedure
92
-
93
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
-
95
- #### Preprocessing [optional]
96
-
97
- [More Information Needed]
98
-
99
-
100
- #### Training Hyperparameters
101
-
102
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
-
104
- #### Speeds, Sizes, Times [optional]
105
-
106
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
-
108
- [More Information Needed]
109
-
110
- ## Evaluation
111
-
112
- <!-- This section describes the evaluation protocols and provides the results. -->
113
-
114
- ### Testing Data, Factors & Metrics
115
-
116
- #### Testing Data
117
-
118
- <!-- This should link to a Dataset Card if possible. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Factors
123
-
124
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
-
126
- [More Information Needed]
127
-
128
- #### Metrics
129
-
130
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
-
132
- [More Information Needed]
133
-
134
- ### Results
135
-
136
- [More Information Needed]
137
-
138
- #### Summary
139
-
140
-
141
-
142
- ## Model Examination [optional]
143
-
144
- <!-- Relevant interpretability work for the model goes here -->
145
-
146
- [More Information Needed]
147
-
148
- ## Environmental Impact
149
-
150
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
-
152
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
-
154
- - **Hardware Type:** [More Information Needed]
155
- - **Hours used:** [More Information Needed]
156
- - **Cloud Provider:** [More Information Needed]
157
- - **Compute Region:** [More Information Needed]
158
- - **Carbon Emitted:** [More Information Needed]
159
-
160
- ## Technical Specifications [optional]
161
-
162
- ### Model Architecture and Objective
163
-
164
- [More Information Needed]
165
-
166
- ### Compute Infrastructure
167
-
168
- [More Information Needed]
169
-
170
- #### Hardware
171
-
172
- [More Information Needed]
173
-
174
- #### Software
175
-
176
- [More Information Needed]
177
-
178
- ## Citation [optional]
179
-
180
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
-
182
- **BibTeX:**
183
-
184
- [More Information Needed]
185
-
186
- **APA:**
187
-
188
- [More Information Needed]
189
-
190
- ## Glossary [optional]
191
-
192
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
-
194
- [More Information Needed]
195
-
196
- ## More Information [optional]
197
-
198
- [More Information Needed]
199
-
200
- ## Model Card Authors [optional]
201
-
202
- [More Information Needed]
203
-
204
- ## Model Card Contact
205
-
206
- [More Information Needed]
207
-
208
 
209
  ### Framework versions
210
 
 
9
  - ko
10
  pipeline_tag: translation
11
  ---
12
+ ### Pretrained LM
13
+ - [beomi/Llama-3-Open-Ko-8B](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) (MIT License)
14
+
15
+ ### Training Dataset
16
+ - [traintogpb/aihub-flores-koen-integrated-sparta-mini-300k](https://huggingface.co/datasets/traintogpb/aihub-flores-koen-integrated-sparta-mini-300k)
17
+ - Can translate in Enlgish-Korean (bi-directional)
18
+
19
+ ### Prompt
20
+ - Template:
21
+ ```python
22
+ prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}: "
23
+
24
+ >>> # src_lang can be 'English', '한국어'
25
+ >>> # tgt_lang can be '한국어', 'English'
26
+ ```
27
+ Mind that there is a "space (`_`)" at the end of the prompt (unpredictable first token will be popped up).
28
+ But if you use vLLM, it's okay to remove the final space(`_`).
29
+
30
+ ### Training
31
+ - Trained with QLoRA
32
+ - PLM: NormalFloat 4-bit
33
+ - Adapter: BrainFloat 16-bit
34
+ - Adapted to all the linear layers (around 2.05%)
35
+ - Merge adapters and upscaled in BrainFloat 16-bit precision
36
+
37
+ ### Usage (IMPORTANT)
38
+ - Should remove the EOS token (`<|endoftext|>`, id=46332) at the end of the prompt.
39
+ ```python
40
+ # MODEL
41
+ adapter_name = 'traintogpb/llama-3-enko-translator-8b-qlora-adapter'
42
+ bnb_config = BitsAndBytesConfig(
43
+ load_in_4bit=True,
44
+ bnb_4bit_quant_type='nf4',
45
+ bnb_4bit_compute_dtype=torch.bfloat16,
46
+ bnb_4bit_use_double_quant=True
47
+ )
48
+ model = AutoModelForCausalLM.from_pretrained(
49
+ model_name,
50
+ max_length=768,
51
+ quantization_config=bnb_config,
52
+ attn_implementation='flash_attention_2',
53
+ torch_dtype=torch.bfloat16,
54
+ )
55
+ model = PeftModel.from_pretrained(
56
+ model,
57
+ adapter_path=adapter_name,
58
+ torch_dtype=torch.bfloat16,
59
+ )
60
+
61
+ tokenizer = AutoTokenizer.from_pretrained(adapter_name)
62
+ tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different
63
+
64
+ text = "Someday, QWER will be the greatest girl band in the world.""
65
+ input_prompt = f"Translate this from English to 한국어.\n### English: {text}\n### 한국어:"
66
+ inputs = tokenizer(input_prompt, max_length=768, truncation=True, return_tensors='pt')
67
+
68
+ if inputs['input_ids'][0][-1] == tokenizer.eos_token_id:
69
+ inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0)
70
+ inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0)
71
+
72
+ outputs = model.generate(**inputs, max_length=768, eos_token_id=tokenizer.eos_token_id)
73
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  ### Framework versions
76