--- license: apache-2.0 --- ## Generate training data ``` # Function to convert dataframe to list of InputExample def df_to_input_examples(df): return [ InputExample(texts=[row['query'], row['document']], label=float(row['relevance_score'])) for _, row in df.iterrows() ] train_samples = df_to_input_examples(train_df) val_samples = df_to_input_examples(val_df) # Create a DataLoader for training train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=16) ``` ## Create Evaluator class ``` # Custom evaluator for CrossEncoder class CrossEncoderEvaluator: def __init__(self, eval_samples): self.eval_samples = eval_samples def __call__(self, model, **kwargs): # Add **kwargs to catch extra arguments predictions = model.predict([[sample.texts[0], sample.texts[1]] for sample in self.eval_samples]) labels = [sample.label for sample in self.eval_samples] pearson_corr, _ = pearsonr(predictions, labels) spearman_corr, _ = spearmanr(predictions, labels) return (pearson_corr + spearman_corr) / 2 # Average of Pearson and Spearman correlations # Prepare the evaluator evaluator = CrossEncoderEvaluator(val_samples) ``` ## Train the model ``` # Initialize the cross-encoder model model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', num_labels=1) # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=100, warmup_steps=100, evaluation_steps=500, output_path='fine_tuned_reranker' ) ``` ## Usage ``` # Load the fine-tuned reranker reranker_model = CrossEncoder('fine_tuned_reranker') def search_and_rerank(query, documents, top_k=10): # Prepare pairs for reranking pairs = [(query, doc) for doc in documents] # Rerank using fine-tuned cross-encoder rerank_scores = reranker_model.predict(pairs) # Sort results by reranker scores reranked_results = sorted( zip(documents, rerank_scores.tolist()), key=lambda x: x[1], reverse=True ) return reranked_results query = "OPPO 8GB 128G" documents = [ "OPPO Reno11F 5G 8GB-256GB", "OPPO Reno11F 5G 8GB-32GB", "OPPO Reno11F 5G 16GB-128GB", "Samsung galaxy 128GB", "Samsung S24 128GB", # ... ] start_time = time.time() results = search_and_rerank(query, documents, len(documents)-1) end_time = time.time() execution_time = (end_time - start_time)*1000 print(f"Execution time: {execution_time:.4f} mili seconds") print(f"Query: \t\t\t\t{query}") for res in results: print(f"Score: {res[-1]:.4f} | Document: {res[0]}") ``` Credit goes to: giangvo.gt@gmail.com