File size: 2,200 Bytes
c527a87
 
 
 
 
 
 
 
 
e8078d0
c527a87
 
 
 
 
 
 
 
 
 
 
e8078d0
c527a87
 
 
 
 
e8078d0
c527a87
 
 
e8078d0
 
c527a87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8078d0
c527a87
 
 
 
 
e8078d0
 
 
 
 
 
 
 
 
 
c527a87
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: clinc_oos
      type: clinc_oos
      args: plus
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9432258064516129
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-distilled-clinc

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1770
- Accuracy: 0.9432

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5226        | 1.0   | 318  | 0.9867          | 0.7287   |
| 0.76          | 2.0   | 636  | 0.4736          | 0.8561   |
| 0.3972        | 3.0   | 954  | 0.2794          | 0.9126   |
| 0.2541        | 4.0   | 1272 | 0.2189          | 0.9294   |
| 0.2017        | 5.0   | 1590 | 0.1971          | 0.9361   |
| 0.1805        | 6.0   | 1908 | 0.1880          | 0.9406   |
| 0.1685        | 7.0   | 2226 | 0.1826          | 0.9413   |
| 0.1626        | 8.0   | 2544 | 0.1799          | 0.9426   |
| 0.1589        | 9.0   | 2862 | 0.1782          | 0.9429   |
| 0.1569        | 10.0  | 3180 | 0.1770          | 0.9432   |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.9.1+cu102
- Datasets 1.13.0
- Tokenizers 0.10.3