File size: 3,286 Bytes
412b701
4689612
 
 
 
 
 
 
 
 
 
93109b8
caa03b8
93109b8
 
 
 
 
b5b24e0
9cfa056
0016dd1
445ff6d
 
 
357e0a4
 
93109b8
0cce9b6
93109b8
 
739f8f6
93109b8
 
 
739f8f6
8ea3efa
93109b8
 
9d70c50
93109b8
8ea3efa
 
 
fd26c06
9d70c50
 
 
fd26c06
8ea3efa
 
 
93109b8
9d70c50
93109b8
8ea3efa
 
 
0cce9b6
93109b8
8ea3efa
93109b8
0cce9b6
93109b8
9d70c50
93109b8
 
 
 
5e085ba
a9ba0ae
93109b8
 
 
07e0265
93109b8
731be01
93109b8
6957526
5e085ba
a9ba0ae
 
 
c633b18
8ea3efa
c633b18
8ea3efa
9b78aab
a9ba0ae
0cce9b6
63f1a81
a9ba0ae
 
a0a75ae
 
9d70c50
a0a75ae
a9ba0ae
 
 
 
 
 
caa03b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
language:
- kk
metrics:
- wer
library_name: nemo
pipeline_tag: automatic-speech-recognition
tags:
- automatic-speech-recognition
- speech
- audio
- pytorch
- stt
---


## Model Overview

In order to prepare and experiment with the model, it's necessary to install [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) [1].\
\
This model have been trained on NVIDIA GeForce RTX 2070:\
Python 3.7.15\
NumPy 1.21.6\
PyTorch 1.21.1\
NVIDIA NeMo 1.7.0

```
pip3 install nemo_toolkit['all']
```

## Model Usage:

The model is accessible within the NeMo toolkit [1] and can serve as a pre-trained checkpoint for either making inferences or for fine-tuning on a different dataset.

#### How to Import

```
import nemo.collections.asr as nemo_asr
model = nemo_asr.models.ASRModel.restore_from(restore_path="stt_kz_quartznet15x5.nemo")
```

#### How to Train

```
python3 train.py --train_manifest path/to/manifest.json --val_manifest path/to/manifest.json \
--accelerator "gpu" --batch_size BATCH_SIZE --num_epochs NUM_EPOCHS \
--model_save_path path/to/save/model.nemo
```

#### How to Evaluate

```
python3 evaluate.py --model_path /path/to/model.nemo --test_manifest path/to/manifest.json --batch_size BATCH_SIZE
```

#### How to Transcribe Audio File

Sample audio to test the model:
```
wget https://asr-kz-example.s3.us-west-2.amazonaws.com/sample_kz.wav
```
This line is to transcribe the single audio:
```
python3 transcribe.py --model_path /path/to/model.nemo --audio_file_path path/to/audio/file
```

## Input and Output

This model can take input from mono-channel audio .WAV files with a sample rate of 16,000 KHz.\
Then, this model gives you the spoken words in a text format for a given audio sample.

## Model Architecture

[QuartzNet 15x5](https://catalog.ngc.nvidia.com/orgs/nvidia/models/quartznet15x5) [2] is a Jasper-like network that uses separable convolutions and larger filter sizes. It has comparable accuracy to Jasper while having much fewer parameters. This particular model has 15 blocks each repeated 5 times.

## Training and Dataset

The model was finetuned to Kazakh speech based on the pre-trained English Model for over several epochs.
[Kazakh Speech Corpus 2](https://issai.nu.edu.kz/kz-speech-corpus/?version=1.1) (KSC2) [3] is the first industrial-scale open-source Kazakh speech corpus.\
In total, KSC2 contains around 1.2k hours of high-quality transcribed data comprising over 600k utterances.

## Performance
The model achieved:\
Average WER: 13.53%\
through the applying of **Greedy Decoding**.

## Limitations

Because the GPU has limited power, lightweight model architecture was used for fine-tuning.\
In general, this makes it faster for inference but might show less overall performance.\
In addition, if the speech includes technical terms or dialect words the model hasn't learned, it may not work as well.

## Demonstration

For inference and downloading the model, check on Hugging Face Space: [NeMo_STT_KZ_Quartznet15x5](https://huggingface.co/spaces/transiteration/nemo_stt_kz_quartznet15x5)

## References

[1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)

[2] [QuartzNet 15x5](https://catalog.ngc.nvidia.com/orgs/nvidia/models/quartznet15x5)

[3] [Kazakh Speech Corpus 2](https://issai.nu.edu.kz/kz-speech-corpus/?version=1.1)