transiteration commited on
Commit
849bbde
·
verified ·
1 Parent(s): 22ab0c6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -6,11 +6,11 @@ metrics:
6
  library_name: nemo
7
  pipeline_tag: automatic-speech-recognition
8
  tags:
9
- - automatic-speech-recognition
10
  - speech
11
  - audio
12
  - pytorch
13
  - stt
 
14
  ---
15
 
16
 
@@ -24,7 +24,7 @@ NumPy 1.21.6\
24
  PyTorch 1.21.1\
25
  NVIDIA NeMo 1.7.0
26
 
27
- ```
28
  pip3 install nemo_toolkit['all']
29
  ```
30
 
@@ -34,14 +34,14 @@ The model is accessible within the NeMo toolkit [1] and can serve as a pre-train
34
 
35
  #### How to Import
36
 
37
- ```
38
  import nemo.collections.asr as nemo_asr
39
  model = nemo_asr.models.ASRModel.restore_from(restore_path="stt_kz_quartznet15x5.nemo")
40
  ```
41
 
42
  #### How to Train
43
 
44
- ```
45
  python3 train.py --train_manifest path/to/manifest.json --val_manifest path/to/manifest.json \
46
  --accelerator "gpu" --batch_size BATCH_SIZE --num_epochs NUM_EPOCHS \
47
  --model_save_path path/to/save/model.nemo
@@ -49,18 +49,18 @@ python3 train.py --train_manifest path/to/manifest.json --val_manifest path/to/m
49
 
50
  #### How to Evaluate
51
 
52
- ```
53
  python3 evaluate.py --model_path /path/to/model.nemo --test_manifest path/to/manifest.json --batch_size BATCH_SIZE
54
  ```
55
 
56
  #### How to Transcribe Audio File
57
 
58
  Sample audio to test the model:
59
- ```
60
  wget https://asr-kz-example.s3.us-west-2.amazonaws.com/sample_kz.wav
61
  ```
62
  This line is to transcribe the single audio:
63
- ```
64
  python3 transcribe.py --model_path /path/to/model.nemo --audio_file_path path/to/audio/file
65
  ```
66
 
@@ -81,7 +81,7 @@ In total, KSC2 contains around 1.2k hours of high-quality transcribed data compr
81
 
82
  ## Performance
83
  The model achieved:\
84
- Average WER: 13.53%\
85
  through the applying of **Greedy Decoding**.
86
 
87
  ## Limitations
 
6
  library_name: nemo
7
  pipeline_tag: automatic-speech-recognition
8
  tags:
 
9
  - speech
10
  - audio
11
  - pytorch
12
  - stt
13
+ - automatic-speech-recognition
14
  ---
15
 
16
 
 
24
  PyTorch 1.21.1\
25
  NVIDIA NeMo 1.7.0
26
 
27
+ ```bash
28
  pip3 install nemo_toolkit['all']
29
  ```
30
 
 
34
 
35
  #### How to Import
36
 
37
+ ```python
38
  import nemo.collections.asr as nemo_asr
39
  model = nemo_asr.models.ASRModel.restore_from(restore_path="stt_kz_quartznet15x5.nemo")
40
  ```
41
 
42
  #### How to Train
43
 
44
+ ```bash
45
  python3 train.py --train_manifest path/to/manifest.json --val_manifest path/to/manifest.json \
46
  --accelerator "gpu" --batch_size BATCH_SIZE --num_epochs NUM_EPOCHS \
47
  --model_save_path path/to/save/model.nemo
 
49
 
50
  #### How to Evaluate
51
 
52
+ ```bash
53
  python3 evaluate.py --model_path /path/to/model.nemo --test_manifest path/to/manifest.json --batch_size BATCH_SIZE
54
  ```
55
 
56
  #### How to Transcribe Audio File
57
 
58
  Sample audio to test the model:
59
+ ```bash
60
  wget https://asr-kz-example.s3.us-west-2.amazonaws.com/sample_kz.wav
61
  ```
62
  This line is to transcribe the single audio:
63
+ ```bash
64
  python3 transcribe.py --model_path /path/to/model.nemo --audio_file_path path/to/audio/file
65
  ```
66
 
 
81
 
82
  ## Performance
83
  The model achieved:\
84
+ Average WER: **13.53%**\
85
  through the applying of **Greedy Decoding**.
86
 
87
  ## Limitations