trinhxuankhai commited on
Commit
2f0f096
1 Parent(s): ada1b59

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen-VL-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen-VL-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "attn.c_proj",
23
+ "w1",
24
+ "c_attn",
25
+ "w2"
26
+ ],
27
+ "task_type": "CAUSAL_LM",
28
+ "use_rslora": false
29
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b78beea85fcd5563f93a9218669ea9805767999bf972a2136a3844b08d6c94c
3
+ size 224482573
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "clean_up_tokenization_spaces": true,
9
+ "model_max_length": 1024,
10
+ "padding_side": "right",
11
+ "tokenizer_class": "QWenTokenizer"
12
+ }
trainer_state.json ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.827586206896552,
5
+ "eval_steps": 2,
6
+ "global_step": 35,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.14,
13
+ "learning_rate": 0.0001,
14
+ "loss": 0.7533,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.28,
19
+ "learning_rate": 9.978670881475172e-05,
20
+ "loss": 0.8025,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.28,
25
+ "eval_loss": 0.6696242094039917,
26
+ "eval_runtime": 44.2051,
27
+ "eval_samples_per_second": 1.968,
28
+ "eval_steps_per_second": 1.968,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.41,
33
+ "learning_rate": 9.91486549841951e-05,
34
+ "loss": 0.6626,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.55,
39
+ "learning_rate": 9.809128215864097e-05,
40
+ "loss": 0.6912,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.55,
45
+ "eval_loss": 0.6283016800880432,
46
+ "eval_runtime": 44.1458,
47
+ "eval_samples_per_second": 1.971,
48
+ "eval_steps_per_second": 1.971,
49
+ "step": 4
50
+ },
51
+ {
52
+ "epoch": 0.69,
53
+ "learning_rate": 9.662361147021779e-05,
54
+ "loss": 0.5708,
55
+ "step": 5
56
+ },
57
+ {
58
+ "epoch": 0.83,
59
+ "learning_rate": 9.475816456775313e-05,
60
+ "loss": 0.6832,
61
+ "step": 6
62
+ },
63
+ {
64
+ "epoch": 0.83,
65
+ "eval_loss": 0.6122540235519409,
66
+ "eval_runtime": 44.1996,
67
+ "eval_samples_per_second": 1.968,
68
+ "eval_steps_per_second": 1.968,
69
+ "step": 6
70
+ },
71
+ {
72
+ "epoch": 0.97,
73
+ "learning_rate": 9.251085678648072e-05,
74
+ "loss": 0.601,
75
+ "step": 7
76
+ },
77
+ {
78
+ "epoch": 1.1,
79
+ "learning_rate": 8.9900861364012e-05,
80
+ "loss": 0.6154,
81
+ "step": 8
82
+ },
83
+ {
84
+ "epoch": 1.1,
85
+ "eval_loss": 0.6039846539497375,
86
+ "eval_runtime": 44.163,
87
+ "eval_samples_per_second": 1.97,
88
+ "eval_steps_per_second": 1.97,
89
+ "step": 8
90
+ },
91
+ {
92
+ "epoch": 1.24,
93
+ "learning_rate": 8.695044586103296e-05,
94
+ "loss": 0.5479,
95
+ "step": 9
96
+ },
97
+ {
98
+ "epoch": 1.38,
99
+ "learning_rate": 8.368478218232787e-05,
100
+ "loss": 0.5438,
101
+ "step": 10
102
+ },
103
+ {
104
+ "epoch": 1.38,
105
+ "eval_loss": 0.5960671901702881,
106
+ "eval_runtime": 44.0267,
107
+ "eval_samples_per_second": 1.976,
108
+ "eval_steps_per_second": 1.976,
109
+ "step": 10
110
+ },
111
+ {
112
+ "epoch": 1.52,
113
+ "learning_rate": 8.013173181896283e-05,
114
+ "loss": 0.6171,
115
+ "step": 11
116
+ },
117
+ {
118
+ "epoch": 1.66,
119
+ "learning_rate": 7.63216081438678e-05,
120
+ "loss": 0.5781,
121
+ "step": 12
122
+ },
123
+ {
124
+ "epoch": 1.66,
125
+ "eval_loss": 0.5879073143005371,
126
+ "eval_runtime": 43.9085,
127
+ "eval_samples_per_second": 1.981,
128
+ "eval_steps_per_second": 1.981,
129
+ "step": 12
130
+ },
131
+ {
132
+ "epoch": 1.79,
133
+ "learning_rate": 7.228691778882693e-05,
134
+ "loss": 0.5811,
135
+ "step": 13
136
+ },
137
+ {
138
+ "epoch": 1.93,
139
+ "learning_rate": 6.806208330935766e-05,
140
+ "loss": 0.4899,
141
+ "step": 14
142
+ },
143
+ {
144
+ "epoch": 1.93,
145
+ "eval_loss": 0.5821757912635803,
146
+ "eval_runtime": 43.9108,
147
+ "eval_samples_per_second": 1.981,
148
+ "eval_steps_per_second": 1.981,
149
+ "step": 14
150
+ },
151
+ {
152
+ "epoch": 2.07,
153
+ "learning_rate": 6.368314950360415e-05,
154
+ "loss": 0.4649,
155
+ "step": 15
156
+ },
157
+ {
158
+ "epoch": 2.21,
159
+ "learning_rate": 5.918747589082853e-05,
160
+ "loss": 0.5615,
161
+ "step": 16
162
+ },
163
+ {
164
+ "epoch": 2.21,
165
+ "eval_loss": 0.5788118839263916,
166
+ "eval_runtime": 43.9641,
167
+ "eval_samples_per_second": 1.979,
168
+ "eval_steps_per_second": 1.979,
169
+ "step": 16
170
+ },
171
+ {
172
+ "epoch": 2.34,
173
+ "learning_rate": 5.4613417973165106e-05,
174
+ "loss": 0.4919,
175
+ "step": 17
176
+ },
177
+ {
178
+ "epoch": 2.48,
179
+ "learning_rate": 5e-05,
180
+ "loss": 0.4755,
181
+ "step": 18
182
+ },
183
+ {
184
+ "epoch": 2.48,
185
+ "eval_loss": 0.5790432691574097,
186
+ "eval_runtime": 43.9953,
187
+ "eval_samples_per_second": 1.977,
188
+ "eval_steps_per_second": 1.977,
189
+ "step": 18
190
+ },
191
+ {
192
+ "epoch": 2.62,
193
+ "learning_rate": 4.5386582026834906e-05,
194
+ "loss": 0.4525,
195
+ "step": 19
196
+ },
197
+ {
198
+ "epoch": 2.76,
199
+ "learning_rate": 4.0812524109171476e-05,
200
+ "loss": 0.4665,
201
+ "step": 20
202
+ },
203
+ {
204
+ "epoch": 2.76,
205
+ "eval_loss": 0.5807910561561584,
206
+ "eval_runtime": 44.0437,
207
+ "eval_samples_per_second": 1.975,
208
+ "eval_steps_per_second": 1.975,
209
+ "step": 20
210
+ },
211
+ {
212
+ "epoch": 2.9,
213
+ "learning_rate": 3.631685049639586e-05,
214
+ "loss": 0.5079,
215
+ "step": 21
216
+ },
217
+ {
218
+ "epoch": 3.03,
219
+ "learning_rate": 3.1937916690642356e-05,
220
+ "loss": 0.4525,
221
+ "step": 22
222
+ },
223
+ {
224
+ "epoch": 3.03,
225
+ "eval_loss": 0.5798379182815552,
226
+ "eval_runtime": 44.0127,
227
+ "eval_samples_per_second": 1.977,
228
+ "eval_steps_per_second": 1.977,
229
+ "step": 22
230
+ },
231
+ {
232
+ "epoch": 3.17,
233
+ "learning_rate": 2.771308221117309e-05,
234
+ "loss": 0.4697,
235
+ "step": 23
236
+ },
237
+ {
238
+ "epoch": 3.31,
239
+ "learning_rate": 2.3678391856132204e-05,
240
+ "loss": 0.4508,
241
+ "step": 24
242
+ },
243
+ {
244
+ "epoch": 3.31,
245
+ "eval_loss": 0.5790860056877136,
246
+ "eval_runtime": 44.0414,
247
+ "eval_samples_per_second": 1.975,
248
+ "eval_steps_per_second": 1.975,
249
+ "step": 24
250
+ },
251
+ {
252
+ "epoch": 3.45,
253
+ "learning_rate": 1.9868268181037185e-05,
254
+ "loss": 0.4566,
255
+ "step": 25
256
+ },
257
+ {
258
+ "epoch": 3.59,
259
+ "learning_rate": 1.631521781767214e-05,
260
+ "loss": 0.4934,
261
+ "step": 26
262
+ },
263
+ {
264
+ "epoch": 3.59,
265
+ "eval_loss": 0.5790104269981384,
266
+ "eval_runtime": 44.0612,
267
+ "eval_samples_per_second": 1.975,
268
+ "eval_steps_per_second": 1.975,
269
+ "step": 26
270
+ },
271
+ {
272
+ "epoch": 3.72,
273
+ "learning_rate": 1.3049554138967051e-05,
274
+ "loss": 0.3934,
275
+ "step": 27
276
+ },
277
+ {
278
+ "epoch": 3.86,
279
+ "learning_rate": 1.0099138635988026e-05,
280
+ "loss": 0.4291,
281
+ "step": 28
282
+ },
283
+ {
284
+ "epoch": 3.86,
285
+ "eval_loss": 0.5794057846069336,
286
+ "eval_runtime": 44.0534,
287
+ "eval_samples_per_second": 1.975,
288
+ "eval_steps_per_second": 1.975,
289
+ "step": 28
290
+ },
291
+ {
292
+ "epoch": 4.0,
293
+ "learning_rate": 7.489143213519301e-06,
294
+ "loss": 0.4485,
295
+ "step": 29
296
+ },
297
+ {
298
+ "epoch": 4.14,
299
+ "learning_rate": 5.241835432246889e-06,
300
+ "loss": 0.4624,
301
+ "step": 30
302
+ },
303
+ {
304
+ "epoch": 4.14,
305
+ "eval_loss": 0.5792465806007385,
306
+ "eval_runtime": 44.0238,
307
+ "eval_samples_per_second": 1.976,
308
+ "eval_steps_per_second": 1.976,
309
+ "step": 30
310
+ },
311
+ {
312
+ "epoch": 4.28,
313
+ "learning_rate": 3.376388529782215e-06,
314
+ "loss": 0.449,
315
+ "step": 31
316
+ },
317
+ {
318
+ "epoch": 4.41,
319
+ "learning_rate": 1.908717841359048e-06,
320
+ "loss": 0.4353,
321
+ "step": 32
322
+ },
323
+ {
324
+ "epoch": 4.41,
325
+ "eval_loss": 0.579724907875061,
326
+ "eval_runtime": 43.9242,
327
+ "eval_samples_per_second": 1.981,
328
+ "eval_steps_per_second": 1.981,
329
+ "step": 32
330
+ },
331
+ {
332
+ "epoch": 4.55,
333
+ "learning_rate": 8.513450158049108e-07,
334
+ "loss": 0.4108,
335
+ "step": 33
336
+ },
337
+ {
338
+ "epoch": 4.69,
339
+ "learning_rate": 2.1329118524827662e-07,
340
+ "loss": 0.4546,
341
+ "step": 34
342
+ },
343
+ {
344
+ "epoch": 4.69,
345
+ "eval_loss": 0.5798984169960022,
346
+ "eval_runtime": 43.9248,
347
+ "eval_samples_per_second": 1.981,
348
+ "eval_steps_per_second": 1.981,
349
+ "step": 34
350
+ },
351
+ {
352
+ "epoch": 4.83,
353
+ "learning_rate": 0.0,
354
+ "loss": 0.4189,
355
+ "step": 35
356
+ },
357
+ {
358
+ "epoch": 4.83,
359
+ "step": 35,
360
+ "total_flos": 9.3962984585429e+16,
361
+ "train_loss": 0.5252525525433677,
362
+ "train_runtime": 2623.1378,
363
+ "train_samples_per_second": 0.66,
364
+ "train_steps_per_second": 0.013
365
+ }
366
+ ],
367
+ "logging_steps": 1.0,
368
+ "max_steps": 35,
369
+ "num_train_epochs": 5,
370
+ "save_steps": 4,
371
+ "total_flos": 9.3962984585429e+16,
372
+ "trial_name": null,
373
+ "trial_params": null
374
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:014db1faf04fd670bfb2f795d2109fb3493541b330e4a093fc005b7a29a7a32d
3
+ size 4155