triniaguilar commited on
Commit
10b96ca
1 Parent(s): 656d754

End of training

Browse files
Files changed (1) hide show
  1. README.md +284 -0
README.md ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: mit
4
+ base_model: FacebookAI/xlm-roberta-large
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - biobert_json
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: xlm-roberta-peft-biobert-batch-size-16
16
+ results: []
17
+ ---
18
+
19
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
+ should probably proofread and complete it, then remove this comment. -->
21
+
22
+ # xlm-roberta-peft-biobert-batch-size-16
23
+
24
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
25
+ It achieves the following results on the evaluation set:
26
+ - Loss: 0.0864
27
+ - Precision: 0.9510
28
+ - Recall: 0.9696
29
+ - F1: 0.9602
30
+ - Accuracy: 0.9812
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 0.0004
50
+ - train_batch_size: 16
51
+ - eval_batch_size: 16
52
+ - seed: 42
53
+ - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
+ - lr_scheduler_type: linear
55
+ - training_steps: 4282
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
61
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
62
+ | 2.3363 | 0.0327 | 20 | 1.1420 | 0.9730 | 0.0063 | 0.0126 | 0.6885 |
63
+ | 0.9396 | 0.0654 | 40 | 0.4876 | 0.7521 | 0.7189 | 0.7351 | 0.8868 |
64
+ | 0.4691 | 0.0980 | 60 | 0.2740 | 0.8289 | 0.8190 | 0.8239 | 0.9238 |
65
+ | 0.3834 | 0.1307 | 80 | 0.2312 | 0.7956 | 0.8816 | 0.8364 | 0.9349 |
66
+ | 0.2974 | 0.1634 | 100 | 0.3061 | 0.7659 | 0.9015 | 0.8282 | 0.9096 |
67
+ | 0.2836 | 0.1961 | 120 | 0.2028 | 0.8521 | 0.9040 | 0.8773 | 0.9449 |
68
+ | 0.2603 | 0.2288 | 140 | 0.1505 | 0.8951 | 0.9228 | 0.9087 | 0.9582 |
69
+ | 0.201 | 0.2614 | 160 | 0.1596 | 0.8936 | 0.8894 | 0.8915 | 0.9502 |
70
+ | 0.2219 | 0.2941 | 180 | 0.1522 | 0.8977 | 0.9239 | 0.9106 | 0.9583 |
71
+ | 0.199 | 0.3268 | 200 | 0.1571 | 0.8836 | 0.9115 | 0.8973 | 0.9566 |
72
+ | 0.1878 | 0.3595 | 220 | 0.1263 | 0.9048 | 0.9404 | 0.9223 | 0.9651 |
73
+ | 0.2207 | 0.3922 | 240 | 0.1415 | 0.8829 | 0.9594 | 0.9195 | 0.9613 |
74
+ | 0.1687 | 0.4248 | 260 | 0.1414 | 0.8970 | 0.9246 | 0.9106 | 0.9553 |
75
+ | 0.1934 | 0.4575 | 280 | 0.1131 | 0.9186 | 0.9506 | 0.9343 | 0.9695 |
76
+ | 0.1318 | 0.4902 | 300 | 0.1076 | 0.9269 | 0.9533 | 0.9399 | 0.9720 |
77
+ | 0.1523 | 0.5229 | 320 | 0.1116 | 0.9179 | 0.9365 | 0.9271 | 0.9681 |
78
+ | 0.1648 | 0.5556 | 340 | 0.1445 | 0.8873 | 0.9595 | 0.9220 | 0.9608 |
79
+ | 0.1386 | 0.5882 | 360 | 0.1313 | 0.8627 | 0.9127 | 0.8870 | 0.9557 |
80
+ | 0.1411 | 0.6209 | 380 | 0.0999 | 0.9240 | 0.9550 | 0.9392 | 0.9718 |
81
+ | 0.1266 | 0.6536 | 400 | 0.1008 | 0.9207 | 0.9575 | 0.9387 | 0.9717 |
82
+ | 0.1203 | 0.6863 | 420 | 0.1021 | 0.9231 | 0.9604 | 0.9414 | 0.9716 |
83
+ | 0.131 | 0.7190 | 440 | 0.0979 | 0.9312 | 0.9445 | 0.9378 | 0.9715 |
84
+ | 0.1242 | 0.7516 | 460 | 0.1121 | 0.9114 | 0.9673 | 0.9386 | 0.9704 |
85
+ | 0.1343 | 0.7843 | 480 | 0.0989 | 0.9257 | 0.9585 | 0.9418 | 0.9725 |
86
+ | 0.1413 | 0.8170 | 500 | 0.0921 | 0.9390 | 0.9568 | 0.9478 | 0.9756 |
87
+ | 0.1044 | 0.8497 | 520 | 0.1186 | 0.9069 | 0.9611 | 0.9332 | 0.9688 |
88
+ | 0.1239 | 0.8824 | 540 | 0.1302 | 0.9119 | 0.9616 | 0.9361 | 0.9653 |
89
+ | 0.1479 | 0.9150 | 560 | 0.1211 | 0.9094 | 0.9607 | 0.9344 | 0.9662 |
90
+ | 0.1513 | 0.9477 | 580 | 0.1021 | 0.9223 | 0.9579 | 0.9397 | 0.9721 |
91
+ | 0.1329 | 0.9804 | 600 | 0.1032 | 0.9356 | 0.9371 | 0.9363 | 0.9722 |
92
+ | 0.1439 | 1.0131 | 620 | 0.1014 | 0.9266 | 0.9656 | 0.9457 | 0.9742 |
93
+ | 0.1118 | 1.0458 | 640 | 0.1143 | 0.9098 | 0.9630 | 0.9357 | 0.9704 |
94
+ | 0.0979 | 1.0784 | 660 | 0.0920 | 0.9408 | 0.9614 | 0.9510 | 0.9768 |
95
+ | 0.0974 | 1.1111 | 680 | 0.0877 | 0.9401 | 0.9577 | 0.9488 | 0.9756 |
96
+ | 0.0932 | 1.1438 | 700 | 0.1008 | 0.9189 | 0.9740 | 0.9456 | 0.9739 |
97
+ | 0.1027 | 1.1765 | 720 | 0.1066 | 0.9220 | 0.9666 | 0.9437 | 0.9711 |
98
+ | 0.0992 | 1.2092 | 740 | 0.1110 | 0.9412 | 0.9457 | 0.9434 | 0.9744 |
99
+ | 0.1096 | 1.2418 | 760 | 0.1052 | 0.9316 | 0.9526 | 0.9420 | 0.9734 |
100
+ | 0.1492 | 1.2745 | 780 | 0.0952 | 0.9393 | 0.9522 | 0.9457 | 0.9748 |
101
+ | 0.0866 | 1.3072 | 800 | 0.0898 | 0.9445 | 0.9595 | 0.9520 | 0.9771 |
102
+ | 0.0975 | 1.3399 | 820 | 0.1042 | 0.9207 | 0.9588 | 0.9393 | 0.9735 |
103
+ | 0.1265 | 1.3725 | 840 | 0.0882 | 0.9319 | 0.9502 | 0.9410 | 0.9750 |
104
+ | 0.1086 | 1.4052 | 860 | 0.0939 | 0.9315 | 0.9619 | 0.9465 | 0.9747 |
105
+ | 0.0985 | 1.4379 | 880 | 0.0967 | 0.9282 | 0.9664 | 0.9469 | 0.9752 |
106
+ | 0.1223 | 1.4706 | 900 | 0.0924 | 0.9298 | 0.9676 | 0.9483 | 0.9746 |
107
+ | 0.0833 | 1.5033 | 920 | 0.0994 | 0.9406 | 0.9215 | 0.9310 | 0.9674 |
108
+ | 0.1043 | 1.5359 | 940 | 0.0958 | 0.9275 | 0.9680 | 0.9473 | 0.9743 |
109
+ | 0.137 | 1.5686 | 960 | 0.0831 | 0.9363 | 0.9644 | 0.9502 | 0.9769 |
110
+ | 0.1156 | 1.6013 | 980 | 0.0825 | 0.9434 | 0.9660 | 0.9546 | 0.9784 |
111
+ | 0.0963 | 1.6340 | 1000 | 0.0940 | 0.9314 | 0.9684 | 0.9495 | 0.9749 |
112
+ | 0.0669 | 1.6667 | 1020 | 0.1094 | 0.9291 | 0.9693 | 0.9487 | 0.9731 |
113
+ | 0.0984 | 1.6993 | 1040 | 0.0921 | 0.9331 | 0.9658 | 0.9492 | 0.9761 |
114
+ | 0.0831 | 1.7320 | 1060 | 0.1035 | 0.9279 | 0.9686 | 0.9478 | 0.9727 |
115
+ | 0.1059 | 1.7647 | 1080 | 0.0903 | 0.9372 | 0.9643 | 0.9506 | 0.9775 |
116
+ | 0.0971 | 1.7974 | 1100 | 0.1004 | 0.9304 | 0.9461 | 0.9382 | 0.9721 |
117
+ | 0.106 | 1.8301 | 1120 | 0.1155 | 0.9090 | 0.9734 | 0.9401 | 0.9712 |
118
+ | 0.0894 | 1.8627 | 1140 | 0.0910 | 0.9340 | 0.9698 | 0.9516 | 0.9773 |
119
+ | 0.0925 | 1.8954 | 1160 | 0.0949 | 0.9247 | 0.9577 | 0.9409 | 0.9726 |
120
+ | 0.0989 | 1.9281 | 1180 | 0.0916 | 0.9339 | 0.9683 | 0.9508 | 0.9769 |
121
+ | 0.0987 | 1.9608 | 1200 | 0.0918 | 0.9360 | 0.9681 | 0.9518 | 0.9768 |
122
+ | 0.0919 | 1.9935 | 1220 | 0.0948 | 0.9314 | 0.9727 | 0.9516 | 0.9767 |
123
+ | 0.0773 | 2.0261 | 1240 | 0.0825 | 0.9377 | 0.9622 | 0.9498 | 0.9775 |
124
+ | 0.0846 | 2.0588 | 1260 | 0.0900 | 0.9331 | 0.9676 | 0.9500 | 0.9769 |
125
+ | 0.0858 | 2.0915 | 1280 | 0.0886 | 0.9324 | 0.9706 | 0.9511 | 0.9770 |
126
+ | 0.067 | 2.1242 | 1300 | 0.0965 | 0.9246 | 0.9732 | 0.9483 | 0.9742 |
127
+ | 0.0691 | 2.1569 | 1320 | 0.1031 | 0.9444 | 0.9478 | 0.9461 | 0.9739 |
128
+ | 0.1099 | 2.1895 | 1340 | 0.0903 | 0.9339 | 0.9625 | 0.9480 | 0.9753 |
129
+ | 0.0613 | 2.2222 | 1360 | 0.0964 | 0.9322 | 0.9667 | 0.9491 | 0.9764 |
130
+ | 0.0758 | 2.2549 | 1380 | 0.0976 | 0.9306 | 0.9727 | 0.9512 | 0.9762 |
131
+ | 0.096 | 2.2876 | 1400 | 0.0982 | 0.9357 | 0.9598 | 0.9476 | 0.9747 |
132
+ | 0.0778 | 2.3203 | 1420 | 0.0800 | 0.9442 | 0.9685 | 0.9562 | 0.9798 |
133
+ | 0.0546 | 2.3529 | 1440 | 0.0838 | 0.9456 | 0.9655 | 0.9554 | 0.9796 |
134
+ | 0.0858 | 2.3856 | 1460 | 0.0979 | 0.9422 | 0.9582 | 0.9502 | 0.9746 |
135
+ | 0.0809 | 2.4183 | 1480 | 0.0945 | 0.9303 | 0.9675 | 0.9485 | 0.9739 |
136
+ | 0.1069 | 2.4510 | 1500 | 0.1209 | 0.8963 | 0.9704 | 0.9319 | 0.9669 |
137
+ | 0.0935 | 2.4837 | 1520 | 0.0900 | 0.9370 | 0.9690 | 0.9528 | 0.9769 |
138
+ | 0.0791 | 2.5163 | 1540 | 0.0803 | 0.9477 | 0.9687 | 0.9581 | 0.9804 |
139
+ | 0.0759 | 2.5490 | 1560 | 0.0822 | 0.9443 | 0.9715 | 0.9577 | 0.9799 |
140
+ | 0.0817 | 2.5817 | 1580 | 0.0801 | 0.9511 | 0.9697 | 0.9603 | 0.9812 |
141
+ | 0.0721 | 2.6144 | 1600 | 0.0906 | 0.9352 | 0.9756 | 0.9550 | 0.9778 |
142
+ | 0.0661 | 2.6471 | 1620 | 0.0883 | 0.9394 | 0.9696 | 0.9542 | 0.9774 |
143
+ | 0.0682 | 2.6797 | 1640 | 0.0855 | 0.95 | 0.9568 | 0.9534 | 0.9780 |
144
+ | 0.0779 | 2.7124 | 1660 | 0.0814 | 0.9463 | 0.9701 | 0.9580 | 0.9804 |
145
+ | 0.0696 | 2.7451 | 1680 | 0.0792 | 0.9406 | 0.9646 | 0.9525 | 0.9780 |
146
+ | 0.0579 | 2.7778 | 1700 | 0.0834 | 0.9413 | 0.9704 | 0.9556 | 0.9782 |
147
+ | 0.1837 | 2.8105 | 1720 | 0.0841 | 0.9393 | 0.9723 | 0.9555 | 0.9794 |
148
+ | 0.0993 | 2.8431 | 1740 | 0.0816 | 0.9422 | 0.9743 | 0.9580 | 0.9797 |
149
+ | 0.0645 | 2.8758 | 1760 | 0.0909 | 0.9367 | 0.9633 | 0.9498 | 0.9770 |
150
+ | 0.0771 | 2.9085 | 1780 | 0.0918 | 0.9277 | 0.9639 | 0.9455 | 0.9754 |
151
+ | 0.104 | 2.9412 | 1800 | 0.1006 | 0.9237 | 0.9636 | 0.9433 | 0.9731 |
152
+ | 0.0883 | 2.9739 | 1820 | 0.0864 | 0.9412 | 0.9678 | 0.9543 | 0.9779 |
153
+ | 0.0653 | 3.0065 | 1840 | 0.0939 | 0.9290 | 0.9701 | 0.9491 | 0.9758 |
154
+ | 0.1244 | 3.0392 | 1860 | 0.1186 | 0.9132 | 0.9614 | 0.9367 | 0.9703 |
155
+ | 0.0524 | 3.0719 | 1880 | 0.0928 | 0.9355 | 0.9683 | 0.9516 | 0.9771 |
156
+ | 0.0756 | 3.1046 | 1900 | 0.0897 | 0.9403 | 0.9687 | 0.9543 | 0.9781 |
157
+ | 0.0664 | 3.1373 | 1920 | 0.0875 | 0.9426 | 0.9676 | 0.9549 | 0.9777 |
158
+ | 0.0653 | 3.1699 | 1940 | 0.1014 | 0.9265 | 0.9741 | 0.9497 | 0.9749 |
159
+ | 0.0614 | 3.2026 | 1960 | 0.0892 | 0.9461 | 0.9657 | 0.9558 | 0.9782 |
160
+ | 0.0705 | 3.2353 | 1980 | 0.0979 | 0.9242 | 0.9626 | 0.9430 | 0.9737 |
161
+ | 0.064 | 3.2680 | 2000 | 0.0845 | 0.9491 | 0.9643 | 0.9567 | 0.9799 |
162
+ | 0.059 | 3.3007 | 2020 | 0.0818 | 0.9442 | 0.9718 | 0.9578 | 0.9803 |
163
+ | 0.0769 | 3.3333 | 2040 | 0.0788 | 0.9451 | 0.9682 | 0.9565 | 0.9801 |
164
+ | 0.0595 | 3.3660 | 2060 | 0.0811 | 0.9493 | 0.9698 | 0.9594 | 0.9801 |
165
+ | 0.0542 | 3.3987 | 2080 | 0.0906 | 0.9367 | 0.9698 | 0.9530 | 0.9777 |
166
+ | 0.0613 | 3.4314 | 2100 | 0.0819 | 0.9452 | 0.9657 | 0.9553 | 0.9786 |
167
+ | 0.0745 | 3.4641 | 2120 | 0.1052 | 0.9211 | 0.9691 | 0.9445 | 0.9725 |
168
+ | 0.0654 | 3.4967 | 2140 | 0.0822 | 0.9469 | 0.9680 | 0.9573 | 0.9794 |
169
+ | 0.0645 | 3.5294 | 2160 | 0.0798 | 0.9439 | 0.9683 | 0.9559 | 0.9792 |
170
+ | 0.0641 | 3.5621 | 2180 | 0.0830 | 0.9398 | 0.9725 | 0.9559 | 0.9774 |
171
+ | 0.0517 | 3.5948 | 2200 | 0.0795 | 0.9503 | 0.9700 | 0.9600 | 0.9801 |
172
+ | 0.0532 | 3.6275 | 2220 | 0.0877 | 0.9415 | 0.9714 | 0.9562 | 0.9787 |
173
+ | 0.0576 | 3.6601 | 2240 | 0.0829 | 0.9492 | 0.9670 | 0.9581 | 0.9797 |
174
+ | 0.0609 | 3.6928 | 2260 | 0.0822 | 0.9517 | 0.9662 | 0.9589 | 0.9796 |
175
+ | 0.0577 | 3.7255 | 2280 | 0.0850 | 0.9487 | 0.9728 | 0.9606 | 0.9804 |
176
+ | 0.0704 | 3.7582 | 2300 | 0.0829 | 0.9514 | 0.9724 | 0.9618 | 0.9815 |
177
+ | 0.052 | 3.7908 | 2320 | 0.0870 | 0.9447 | 0.9711 | 0.9577 | 0.9798 |
178
+ | 0.0794 | 3.8235 | 2340 | 0.0837 | 0.9493 | 0.9709 | 0.9600 | 0.9804 |
179
+ | 0.0693 | 3.8562 | 2360 | 0.0943 | 0.9428 | 0.9685 | 0.9555 | 0.9769 |
180
+ | 0.0727 | 3.8889 | 2380 | 0.0928 | 0.9370 | 0.9735 | 0.9549 | 0.9775 |
181
+ | 0.0729 | 3.9216 | 2400 | 0.0914 | 0.9352 | 0.9698 | 0.9522 | 0.9775 |
182
+ | 0.0805 | 3.9542 | 2420 | 0.0804 | 0.9452 | 0.9712 | 0.9580 | 0.9804 |
183
+ | 0.0737 | 3.9869 | 2440 | 0.0807 | 0.9450 | 0.9701 | 0.9574 | 0.9802 |
184
+ | 0.0556 | 4.0196 | 2460 | 0.0814 | 0.9484 | 0.9723 | 0.9602 | 0.9812 |
185
+ | 0.0533 | 4.0523 | 2480 | 0.0832 | 0.9424 | 0.9738 | 0.9578 | 0.9801 |
186
+ | 0.0435 | 4.0850 | 2500 | 0.0824 | 0.9453 | 0.9708 | 0.9579 | 0.9801 |
187
+ | 0.0356 | 4.1176 | 2520 | 0.0869 | 0.9414 | 0.9688 | 0.9549 | 0.9795 |
188
+ | 0.0565 | 4.1503 | 2540 | 0.0857 | 0.9536 | 0.9657 | 0.9596 | 0.9806 |
189
+ | 0.0466 | 4.1830 | 2560 | 0.0884 | 0.9509 | 0.9661 | 0.9584 | 0.9789 |
190
+ | 0.0692 | 4.2157 | 2580 | 0.0849 | 0.9435 | 0.9742 | 0.9586 | 0.9803 |
191
+ | 0.0388 | 4.2484 | 2600 | 0.0844 | 0.9412 | 0.9714 | 0.9560 | 0.9795 |
192
+ | 0.0471 | 4.2810 | 2620 | 0.0780 | 0.9511 | 0.9674 | 0.9592 | 0.9810 |
193
+ | 0.0666 | 4.3137 | 2640 | 0.0800 | 0.9511 | 0.9663 | 0.9586 | 0.9806 |
194
+ | 0.0574 | 4.3464 | 2660 | 0.0975 | 0.9253 | 0.9721 | 0.9481 | 0.9751 |
195
+ | 0.0597 | 4.3791 | 2680 | 0.0821 | 0.9489 | 0.9611 | 0.9550 | 0.9796 |
196
+ | 0.045 | 4.4118 | 2700 | 0.0837 | 0.9457 | 0.9691 | 0.9572 | 0.9799 |
197
+ | 0.0427 | 4.4444 | 2720 | 0.0871 | 0.9392 | 0.9710 | 0.9548 | 0.9792 |
198
+ | 0.0389 | 4.4771 | 2740 | 0.0816 | 0.9475 | 0.9712 | 0.9592 | 0.9810 |
199
+ | 0.0481 | 4.5098 | 2760 | 0.0865 | 0.9465 | 0.9708 | 0.9585 | 0.9805 |
200
+ | 0.0649 | 4.5425 | 2780 | 0.0827 | 0.9484 | 0.9637 | 0.9560 | 0.9795 |
201
+ | 0.0533 | 4.5752 | 2800 | 0.0850 | 0.9398 | 0.9698 | 0.9546 | 0.9792 |
202
+ | 0.0431 | 4.6078 | 2820 | 0.0776 | 0.9478 | 0.9752 | 0.9613 | 0.9815 |
203
+ | 0.0519 | 4.6405 | 2840 | 0.0813 | 0.9434 | 0.9731 | 0.9580 | 0.9797 |
204
+ | 0.0416 | 4.6732 | 2860 | 0.0804 | 0.9444 | 0.9673 | 0.9557 | 0.9793 |
205
+ | 0.0405 | 4.7059 | 2880 | 0.0826 | 0.9504 | 0.9701 | 0.9602 | 0.9799 |
206
+ | 0.0522 | 4.7386 | 2900 | 0.0833 | 0.9436 | 0.9708 | 0.9570 | 0.9799 |
207
+ | 0.0595 | 4.7712 | 2920 | 0.0835 | 0.9434 | 0.9733 | 0.9581 | 0.9799 |
208
+ | 0.0362 | 4.8039 | 2940 | 0.0809 | 0.9484 | 0.9719 | 0.9600 | 0.9805 |
209
+ | 0.0436 | 4.8366 | 2960 | 0.0835 | 0.9490 | 0.9695 | 0.9592 | 0.9802 |
210
+ | 0.059 | 4.8693 | 2980 | 0.0894 | 0.9363 | 0.9721 | 0.9539 | 0.9776 |
211
+ | 0.0395 | 4.9020 | 3000 | 0.0793 | 0.9475 | 0.9724 | 0.9598 | 0.9807 |
212
+ | 0.0413 | 4.9346 | 3020 | 0.0818 | 0.9476 | 0.9690 | 0.9582 | 0.9809 |
213
+ | 0.0666 | 4.9673 | 3040 | 0.0816 | 0.9449 | 0.9692 | 0.9569 | 0.9794 |
214
+ | 0.0452 | 5.0 | 3060 | 0.0811 | 0.9466 | 0.9739 | 0.9601 | 0.9806 |
215
+ | 0.0367 | 5.0327 | 3080 | 0.0811 | 0.9453 | 0.9712 | 0.9581 | 0.9807 |
216
+ | 0.0521 | 5.0654 | 3100 | 0.0749 | 0.9506 | 0.9710 | 0.9607 | 0.9817 |
217
+ | 0.0308 | 5.0980 | 3120 | 0.0852 | 0.9406 | 0.9728 | 0.9564 | 0.9794 |
218
+ | 0.0434 | 5.1307 | 3140 | 0.0804 | 0.9501 | 0.9712 | 0.9605 | 0.9808 |
219
+ | 0.0414 | 5.1634 | 3160 | 0.0799 | 0.9497 | 0.9714 | 0.9604 | 0.9806 |
220
+ | 0.0343 | 5.1961 | 3180 | 0.0826 | 0.9477 | 0.9712 | 0.9593 | 0.9803 |
221
+ | 0.0355 | 5.2288 | 3200 | 0.0882 | 0.9436 | 0.9693 | 0.9562 | 0.9792 |
222
+ | 0.0351 | 5.2614 | 3220 | 0.0869 | 0.9489 | 0.9704 | 0.9595 | 0.9805 |
223
+ | 0.0377 | 5.2941 | 3240 | 0.0864 | 0.9503 | 0.9669 | 0.9586 | 0.9802 |
224
+ | 0.0331 | 5.3268 | 3260 | 0.0865 | 0.9508 | 0.9698 | 0.9602 | 0.9809 |
225
+ | 0.0386 | 5.3595 | 3280 | 0.0850 | 0.9511 | 0.9692 | 0.9601 | 0.9807 |
226
+ | 0.0312 | 5.3922 | 3300 | 0.0856 | 0.9500 | 0.9665 | 0.9582 | 0.9801 |
227
+ | 0.0382 | 5.4248 | 3320 | 0.0844 | 0.9551 | 0.9625 | 0.9588 | 0.9807 |
228
+ | 0.0559 | 5.4575 | 3340 | 0.0841 | 0.9506 | 0.9693 | 0.9598 | 0.9811 |
229
+ | 0.0295 | 5.4902 | 3360 | 0.0872 | 0.9480 | 0.9671 | 0.9575 | 0.9800 |
230
+ | 0.0448 | 5.5229 | 3380 | 0.0832 | 0.9537 | 0.9676 | 0.9606 | 0.9814 |
231
+ | 0.0348 | 5.5556 | 3400 | 0.0874 | 0.9493 | 0.9686 | 0.9588 | 0.9801 |
232
+ | 0.0396 | 5.5882 | 3420 | 0.0893 | 0.9470 | 0.9677 | 0.9572 | 0.9793 |
233
+ | 0.0477 | 5.6209 | 3440 | 0.0924 | 0.9455 | 0.9677 | 0.9565 | 0.9782 |
234
+ | 0.0535 | 5.6536 | 3460 | 0.0824 | 0.9490 | 0.9695 | 0.9592 | 0.9804 |
235
+ | 0.0343 | 5.6863 | 3480 | 0.0823 | 0.9502 | 0.9690 | 0.9595 | 0.9808 |
236
+ | 0.0409 | 5.7190 | 3500 | 0.0845 | 0.9480 | 0.9695 | 0.9586 | 0.9805 |
237
+ | 0.0345 | 5.7516 | 3520 | 0.0847 | 0.9499 | 0.9686 | 0.9592 | 0.9807 |
238
+ | 0.0337 | 5.7843 | 3540 | 0.0863 | 0.9488 | 0.9707 | 0.9597 | 0.9806 |
239
+ | 0.0379 | 5.8170 | 3560 | 0.0824 | 0.9534 | 0.9694 | 0.9613 | 0.9814 |
240
+ | 0.0399 | 5.8497 | 3580 | 0.0820 | 0.9521 | 0.9722 | 0.9620 | 0.9812 |
241
+ | 0.038 | 5.8824 | 3600 | 0.0825 | 0.9497 | 0.9698 | 0.9596 | 0.9803 |
242
+ | 0.0287 | 5.9150 | 3620 | 0.0812 | 0.9530 | 0.9687 | 0.9608 | 0.9810 |
243
+ | 0.0333 | 5.9477 | 3640 | 0.0843 | 0.9496 | 0.9705 | 0.9599 | 0.9807 |
244
+ | 0.0448 | 5.9804 | 3660 | 0.0861 | 0.9485 | 0.9678 | 0.9580 | 0.9793 |
245
+ | 0.0312 | 6.0131 | 3680 | 0.0863 | 0.9449 | 0.9694 | 0.9570 | 0.9790 |
246
+ | 0.037 | 6.0458 | 3700 | 0.0832 | 0.9519 | 0.9688 | 0.9603 | 0.9811 |
247
+ | 0.0274 | 6.0784 | 3720 | 0.0841 | 0.9522 | 0.9680 | 0.9600 | 0.9808 |
248
+ | 0.0341 | 6.1111 | 3740 | 0.0843 | 0.9489 | 0.9704 | 0.9595 | 0.9806 |
249
+ | 0.0247 | 6.1438 | 3760 | 0.0872 | 0.9448 | 0.9674 | 0.9559 | 0.9799 |
250
+ | 0.0225 | 6.1765 | 3780 | 0.0883 | 0.9457 | 0.9656 | 0.9556 | 0.9798 |
251
+ | 0.0244 | 6.2092 | 3800 | 0.0912 | 0.9447 | 0.9679 | 0.9562 | 0.9791 |
252
+ | 0.0357 | 6.2418 | 3820 | 0.0898 | 0.9492 | 0.9685 | 0.9588 | 0.9805 |
253
+ | 0.0435 | 6.2745 | 3840 | 0.0895 | 0.9505 | 0.9690 | 0.9596 | 0.9808 |
254
+ | 0.0289 | 6.3072 | 3860 | 0.0903 | 0.9507 | 0.9684 | 0.9594 | 0.9807 |
255
+ | 0.0299 | 6.3399 | 3880 | 0.0907 | 0.9487 | 0.9674 | 0.9579 | 0.9803 |
256
+ | 0.0302 | 6.3725 | 3900 | 0.0898 | 0.9508 | 0.9681 | 0.9594 | 0.9806 |
257
+ | 0.0277 | 6.4052 | 3920 | 0.0899 | 0.9504 | 0.9680 | 0.9591 | 0.9808 |
258
+ | 0.0296 | 6.4379 | 3940 | 0.0895 | 0.9497 | 0.9670 | 0.9582 | 0.9808 |
259
+ | 0.0214 | 6.4706 | 3960 | 0.0909 | 0.9479 | 0.9691 | 0.9584 | 0.9808 |
260
+ | 0.0259 | 6.5033 | 3980 | 0.0895 | 0.9505 | 0.9702 | 0.9602 | 0.9813 |
261
+ | 0.0316 | 6.5359 | 4000 | 0.0880 | 0.9517 | 0.9694 | 0.9605 | 0.9812 |
262
+ | 0.0307 | 6.5686 | 4020 | 0.0873 | 0.9520 | 0.9700 | 0.9609 | 0.9814 |
263
+ | 0.0339 | 6.6013 | 4040 | 0.0875 | 0.9515 | 0.9699 | 0.9606 | 0.9812 |
264
+ | 0.0202 | 6.6340 | 4060 | 0.0876 | 0.9511 | 0.9700 | 0.9605 | 0.9812 |
265
+ | 0.0243 | 6.6667 | 4080 | 0.0877 | 0.9511 | 0.9690 | 0.9600 | 0.9811 |
266
+ | 0.0384 | 6.6993 | 4100 | 0.0870 | 0.9515 | 0.9690 | 0.9602 | 0.9812 |
267
+ | 0.0276 | 6.7320 | 4120 | 0.0871 | 0.9508 | 0.9690 | 0.9598 | 0.9811 |
268
+ | 0.0381 | 6.7647 | 4140 | 0.0867 | 0.9510 | 0.9690 | 0.9599 | 0.9811 |
269
+ | 0.035 | 6.7974 | 4160 | 0.0861 | 0.9521 | 0.9688 | 0.9604 | 0.9813 |
270
+ | 0.0277 | 6.8301 | 4180 | 0.0863 | 0.9515 | 0.9690 | 0.9602 | 0.9812 |
271
+ | 0.0219 | 6.8627 | 4200 | 0.0863 | 0.9515 | 0.9693 | 0.9603 | 0.9812 |
272
+ | 0.0232 | 6.8954 | 4220 | 0.0864 | 0.9509 | 0.9694 | 0.9601 | 0.9811 |
273
+ | 0.0266 | 6.9281 | 4240 | 0.0866 | 0.9508 | 0.9695 | 0.9601 | 0.9812 |
274
+ | 0.0269 | 6.9608 | 4260 | 0.0865 | 0.9510 | 0.9695 | 0.9602 | 0.9812 |
275
+ | 0.0237 | 6.9935 | 4280 | 0.0864 | 0.9510 | 0.9696 | 0.9602 | 0.9812 |
276
+
277
+
278
+ ### Framework versions
279
+
280
+ - PEFT 0.13.2
281
+ - Transformers 4.46.3
282
+ - Pytorch 2.5.1+cu121
283
+ - Datasets 3.2.0
284
+ - Tokenizers 0.20.3