trollek commited on
Commit
bf1d723
1 Parent(s): 643ce63

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -3
README.md CHANGED
@@ -1,3 +1,88 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - m-a-p/CodeFeedback-Filtered-Instruction
5
+ - m-a-p/Code-Feedback
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ tags:
10
+ - llama-factory
11
+ - unsloth
12
+ ---
13
+ # h2o-danube2 with ChatML template
14
+
15
+ This model was first fine-tuned with [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") on [m-a-p/CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) and [m-a-p/Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback), unfiltered from the latest [dolphin dataset](https://huggingface.co/datasets/cognitivecomputations/dolphin-2.9.3), using LLama-Factory.
16
+
17
+ ## Template
18
+
19
+ ```jinja
20
+ <|im_start|>system
21
+ {{system}}<|im_end|>
22
+ <|im_start|>user
23
+ {{instruction}}<|im_end|>
24
+ <|im_start|>assistant
25
+ {{response}}<|im_end|>
26
+ ```
27
+
28
+ ## BAdam config
29
+
30
+ **System:** You are a helpful coding assistant.
31
+
32
+ ```yaml
33
+ ### model
34
+ model_name_or_path: danube2-base-chatml
35
+
36
+ ### method
37
+ stage: sft
38
+ do_train: true
39
+ finetuning_type: full
40
+ use_badam: true
41
+ badam_switch_mode: ascending
42
+ badam_switch_interval: 50
43
+ badam_verbose: 1
44
+ badam_start_block: 10
45
+ seed: 720
46
+
47
+ ### dataset
48
+ dataset: codefeedback_instruct_unfiltered,codefeedback_unfiltered
49
+ template: hermes_chatml
50
+ cutoff_len: 8192
51
+ overwrite_cache: false
52
+ preprocessing_num_workers: 12
53
+
54
+ ### output
55
+ output_dir: code-feedback-chatml-badam
56
+ logging_steps: 5
57
+ save_steps: 1
58
+ save_strategy: epoch
59
+ plot_loss: true
60
+ overwrite_output_dir: false
61
+
62
+ ### train
63
+ per_device_train_batch_size: 2
64
+ gradient_accumulation_steps: 8
65
+ learning_rate: 0.00001
66
+ num_train_epochs: 1
67
+ lr_scheduler_type: cosine
68
+ warmup_ratio: 0.01
69
+ bf16: true
70
+ flash_attn: fa2
71
+
72
+ ### eval
73
+ val_size: 0.01
74
+ per_device_eval_batch_size: 1
75
+ eval_strategy: steps
76
+ eval_steps: 2000
77
+ ```
78
+
79
+ ### BAdam training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss |
82
+ |:-------------:|:------:|:-----:|:---------------:|
83
+ | 0.6181 | 0.1789 | 2000 | 0.6044 |
84
+ | 0.6835 | 0.3578 | 4000 | 0.5949 |
85
+ | 0.5649 | 0.5367 | 6000 | 0.5893 |
86
+ | 0.6559 | 0.7155 | 8000 | 0.5850 |
87
+ | 0.6591 | 0.8944 | 10000 | 0.5839 |
88
+