--- license: apache-2.0 datasets: - m-a-p/CodeFeedback-Filtered-Instruction - m-a-p/Code-Feedback language: - en library_name: transformers tags: - llama-factory - unsloth --- # h2o-danube2 with ChatML template This model was first fine-tuned with [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") on [m-a-p/CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) and [m-a-p/Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback), unfiltered from the latest [dolphin dataset](https://huggingface.co/datasets/cognitivecomputations/dolphin-2.9.3), using LLama-Factory. ## Template ```jinja <|im_start|>system You are a helpful coding assistant.<|im_end|> <|im_start|>user {{instruction}}<|im_end|> <|im_start|>assistant {{response}}<|im_end|> ``` ## BAdam config **System:** You are a helpful coding assistant. ```yaml ### model model_name_or_path: danube2-base-chatml ### method stage: sft do_train: true finetuning_type: full use_badam: true badam_switch_mode: ascending badam_switch_interval: 50 badam_verbose: 1 badam_start_block: 10 seed: 720 ### dataset dataset: codefeedback_instruct_unfiltered,codefeedback_unfiltered template: hermes_chatml cutoff_len: 8192 overwrite_cache: false preprocessing_num_workers: 12 ### output output_dir: code-feedback-chatml-badam logging_steps: 5 save_steps: 1 save_strategy: epoch plot_loss: true overwrite_output_dir: false ### train per_device_train_batch_size: 2 gradient_accumulation_steps: 8 learning_rate: 0.00001 num_train_epochs: 1 lr_scheduler_type: cosine warmup_ratio: 0.01 bf16: true flash_attn: fa2 ### eval val_size: 0.01 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 2000 ``` ### BAdam training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.6181 | 0.1789 | 2000 | 0.6044 | | 0.6835 | 0.3578 | 4000 | 0.5949 | | 0.5649 | 0.5367 | 6000 | 0.5893 | | 0.6559 | 0.7155 | 8000 | 0.5850 | | 0.6591 | 0.8944 | 10000 | 0.5839 |