--- license: apache-2.0 base_model: h2oai/h2o-danube2-1.8b-base datasets: - TIGER-Lab/MathInstruct language: - en library_name: transformers tags: - llama-factory - unsloth --- # h2o-danube2 with ChatML template This model was first fine-tuned with [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") on [TIGER-Lab/MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) using LLama-Factory. ## Quants Mad props, [mradermacher](https://huggingface.co/mradermacher)! - [mradermacher/danube2-1.8b-MathInstruct-GGUF](https://huggingface.co/mradermacher/danube2-1.8b-MathInstruct-GGUF) ## Template ```jinja <|im_start|>system You are a helpful assistant specialised in mathematics.<|im_end|> <|im_start|>user {{instruction}}<|im_end|> <|im_start|>assistant {{response}}<|im_end|> ``` ## BAdam config ```yaml ### model model_name_or_path: danube2-base-chatml ### method stage: sft do_train: true finetuning_type: full use_badam: true badam_switch_mode: ascending badam_switch_interval: 50 badam_verbose: 1 badam_start_block: 7 seed: 5772 ### dataset dataset: mathinstruct template: ninja_chatml cutoff_len: 8192 overwrite_cache: false preprocessing_num_workers: 12 ### output output_dir: mathinstruct-chatml-badam logging_steps: 5 save_steps: 1 save_strategy: epoch plot_loss: true overwrite_output_dir: false ### train per_device_train_batch_size: 4 gradient_accumulation_steps: 4 learning_rate: 0.000005 num_train_epochs: 1 lr_scheduler_type: cosine warmup_ratio: 0.01 pure_bf16: true flash_attn: fa2 ### eval val_size: 0.01 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 1000 ``` ### BAdam training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.2748 | 0.0617 | 1000 | 0.2788 | | 0.2786 | 0.1234 | 2000 | 0.2503 | | 0.18 | 0.1850 | 3000 | 0.2144 | | 0.2015 | 0.2467 | 4000 | 0.1926 | | 0.2044 | 0.3084 | 5000 | 0.1777 | | 0.142 | 0.3701 | 6000 | 0.1661 | | 0.1813 | 0.4317 | 7000 | 0.1570 | | 0.1413 | 0.4934 | 8000 | 0.1529 | | 0.1805 | 0.5551 | 9000 | 0.1462 | | 0.1431 | 0.6168 | 10000 | 0.1410 | | 0.1693 | 0.6784 | 11000 | 0.1375 | | 0.1291 | 0.7401 | 12000 | 0.1357 | | 0.1501 | 0.8018 | 13000 | 0.1348 | | 0.1521 | 0.8635 | 14000 | 0.1345 | | 0.1279 | 0.9251 | 15000 | 0.1346 | | 0.1351 | 0.9868 | 16000 | 0.1344 | ### GSM8K results |Tasks|Version| Filter |n-shot| Metric |Value | |Stderr| |-----|------:|----------------|-----:|-----------|-----:|---|-----:| |gsm8k| 3|strict-match | 5|exact_match|0.2691|± |0.0122| | | |flexible-extract| 5|exact_match|0.2752|± |0.0123| It matches the chat trained model from h2o.