--- license: apache-2.0 datasets: - abacusai/SystemChat-1.1 language: - en library_name: transformers tags: - llama-factory - unsloth --- # h2o-danube2 with ChatML template This is a [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") and [LoRA+](https://arxiv.org/abs/2402.12354 "LoRA+: Efficient Low Rank Adaptation of Large Models") fine-tuned danube2 base model. It uses the ChatML template and was trained on the [SystemChat-1.1](https://huggingface.co/datasets/abacusai/SystemChat-1.1) from [Abacus.AI](https://huggingface.co/abacusai). ## Quants Thank you [mradermacher](https://huggingface.co/mradermacher)! - [mradermacher/danube2-1.8b-SystemChat-1.1-GGUF](https://huggingface.co/mradermacher/danube2-1.8b-SystemChat-1.1-GGUF) ## Template ```jinja <|im_start|>system {{system}}<|im_end|> <|im_start|>user {{instruction}}<|im_end|> <|im_start|>assistant {{response}}<|im_end|> ``` ## BAdam ```yaml ### model model_name_or_path: danube2-base-chatml ### method stage: sft do_train: true finetuning_type: full use_badam: true badam_switch_mode: descending badam_switch_interval: 50 badam_start_block: 22 badam_mask_mode: scatter badam_verbose: 1 seed: 314 ### dataset dataset: systemchat11 template: hermes_chatml cutoff_len: 8192 overwrite_cache: false preprocessing_num_workers: 12 ### output output_dir: systemchat11-chatml-badam logging_steps: 5 save_steps: 1 save_strategy: epoch plot_loss: true overwrite_output_dir: false ### train per_device_train_batch_size: 2 gradient_accumulation_steps: 8 learning_rate: 0.00002 num_train_epochs: 3 lr_scheduler_type: cosine warmup_ratio: 0.01 bf16: true flash_attn: fa2 ### eval val_size: 0.01 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 1000 ``` ### BAdam Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0062 | 0.8324 | 1000 | 0.9837 | | 0.8484 | 1.6648 | 2000 | 0.9388 | | 0.7834 | 2.4971 | 3000 | 0.9309 | ## QLoRA+ ```yaml ### model model_name_or_path: systemchat11-chatml-badam ### method stage: sft do_train: true finetuning_type: lora lora_target: all loraplus_lr_ratio: 16.0 lora_rank: 8 lora_alpha: 16 use_unsloth: true quantization_bit: 4 upcast_layernorm: true seed: 31415 ### dataset dataset: systemchat11 template: hermes_chatml cutoff_len: 8192 overwrite_cache: false preprocessing_num_workers: 12 ### output output_dir: systemchat11-chatml-badam/loraplus logging_steps: 1 save_steps: 1 save_strategy: epoch plot_loss: true overwrite_output_dir: false ### train per_device_train_batch_size: 4 gradient_accumulation_steps: 4 learning_rate: 0.0001 num_train_epochs: 2.0 lr_scheduler_type: cosine warmup_ratio: 0.01 bf16: true flash_attn: fa2 ### eval val_size: 0.02 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 500 ``` ### QLoRA+ Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8591 | 0.4204 | 500 | 0.8457 | | 0.9098 | 0.8409 | 1000 | 0.8251 | | 0.735 | 1.2613 | 1500 | 0.8304 | | 0.6811 | 1.6817 | 2000 | 0.8252 |