--- license: apache-2.0 datasets: - cognitivecomputations/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split language: - en library_name: transformers base_model: h2oai/h2o-danube2-1.8b-base tags: - llama-factory - unsloth --- # h2o-danube2 with ChatML template This model was first fine-tuned with [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") on [cognitivecomputations/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split](https://huggingface.co/datasets/cognitivecomputations/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split) using LLama-Factory. ## Quants Thanks to [mradermacher](https://huggingface.co/mradermacher)! - [mradermacher/danube2-1.8b-WizardLM-Evol-V2-Unfiltered-GGUF](https://huggingface.co/mradermacher/danube2-1.8b-WizardLM-Evol-V2-Unfiltered-GGUF) ## Template ```jinja <|im_start|>system You are a helpful assistant that gives long and detailed answers.<|im_end|> <|im_start|>user {{instruction}}<|im_end|> <|im_start|>assistant {{response}}<|im_end|> ``` ## BAdam config ```yaml ### model model_name_or_path: danube2-base-chatml ### method stage: sft do_train: true finetuning_type: full use_badam: true badam_switch_mode: ascending badam_switch_interval: 50 badam_verbose: 1 badam_start_block: 6 seed: 720 ### dataset dataset: wizardlm_evol_v2_196k_unfiltered template: ninja_chatml cutoff_len: 8192 overwrite_cache: false preprocessing_num_workers: 12 ### output output_dir: wizardlm-evol-v2-chatml-badam logging_steps: 5 save_steps: 1 save_strategy: epoch plot_loss: true overwrite_output_dir: false ### train per_device_train_batch_size: 2 gradient_accumulation_steps: 8 learning_rate: 0.00001 num_train_epochs: 1 lr_scheduler_type: constant_with_warmup warmup_ratio: 0.01 pure_bf16: true flash_attn: fa2 ### eval val_size: 0.01 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 1000 ``` ### BAdam training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6195 | 0.1050 | 1000 | 0.7363 | | 0.6788 | 0.2100 | 2000 | 0.7252 | | 0.689 | 0.3150 | 3000 | 0.7172 | | 0.6707 | 0.4200 | 4000 | 0.7133 | | 0.6674 | 0.5250 | 5000 | 0.7091 | | 0.7365 | 0.6301 | 6000 | 0.7085 | | 0.7037 | 0.7351 | 7000 | 0.7066 | | 0.709 | 0.8401 | 8000 | 0.7041 | | 0.6652 | 0.9451 | 9000 | 0.7042 |