troybvo commited on
Commit
805682f
·
verified ·
1 Parent(s): 17a8928

End of training

Browse files
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
  license: other
 
3
  tags:
4
  - vision
5
  - image-segmentation
6
  - generated_from_trainer
7
- base_model: nvidia/mit-b0
8
  model-index:
9
  - name: segformer-b0-finetuned-segments-sidewalk-test
10
  results: []
@@ -17,14 +17,80 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.1620
21
- - Mean Iou: 0.4717
22
- - Mean Accuracy: 0.9435
23
- - Overall Accuracy: 0.9435
24
- - Accuracy Other: nan
25
- - Accuracy Flat-sidewalk: 0.9435
26
- - Iou Other: 0.0
27
- - Iou Flat-sidewalk: 0.9435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ## Model description
30
 
@@ -53,24 +119,24 @@ The following hyperparameters were used during training:
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Other | Accuracy Flat-sidewalk | Iou Other | Iou Flat-sidewalk |
57
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:----------------------:|:---------:|:-----------------:|
58
- | 0.0426 | 0.125 | 20 | 0.1662 | 0.4707 | 0.9414 | 0.9414 | nan | 0.9414 | 0.0 | 0.9414 |
59
- | 0.0301 | 0.25 | 40 | 0.1757 | 0.4761 | 0.9522 | 0.9522 | nan | 0.9522 | 0.0 | 0.9522 |
60
- | 0.0307 | 0.375 | 60 | 0.1795 | 0.4676 | 0.9353 | 0.9353 | nan | 0.9353 | 0.0 | 0.9353 |
61
- | 0.0451 | 0.5 | 80 | 0.1655 | 0.4730 | 0.9460 | 0.9460 | nan | 0.9460 | 0.0 | 0.9460 |
62
- | 0.041 | 0.625 | 100 | 0.1745 | 0.4726 | 0.9452 | 0.9452 | nan | 0.9452 | 0.0 | 0.9452 |
63
- | 0.0406 | 0.75 | 120 | 0.1629 | 0.4769 | 0.9539 | 0.9539 | nan | 0.9539 | 0.0 | 0.9539 |
64
- | 0.0798 | 0.875 | 140 | 0.1594 | 0.4686 | 0.9372 | 0.9372 | nan | 0.9372 | 0.0 | 0.9372 |
65
- | 0.0349 | 1.0 | 160 | 0.1582 | 0.4718 | 0.9436 | 0.9436 | nan | 0.9436 | 0.0 | 0.9436 |
66
- | 0.0566 | 1.125 | 180 | 0.1785 | 0.4654 | 0.9307 | 0.9307 | nan | 0.9307 | 0.0 | 0.9307 |
67
- | 0.0283 | 1.25 | 200 | 0.1637 | 0.4735 | 0.9470 | 0.9470 | nan | 0.9470 | 0.0 | 0.9470 |
68
- | 0.0262 | 1.375 | 220 | 0.1740 | 0.4760 | 0.9519 | 0.9519 | nan | 0.9519 | 0.0 | 0.9519 |
69
- | 0.0335 | 1.5 | 240 | 0.1640 | 0.4733 | 0.9465 | 0.9465 | nan | 0.9465 | 0.0 | 0.9465 |
70
- | 0.0365 | 1.625 | 260 | 0.1631 | 0.4737 | 0.9474 | 0.9474 | nan | 0.9474 | 0.0 | 0.9474 |
71
- | 0.0781 | 1.75 | 280 | 0.1653 | 0.4733 | 0.9466 | 0.9466 | nan | 0.9466 | 0.0 | 0.9466 |
72
- | 0.0846 | 1.875 | 300 | 0.1671 | 0.4724 | 0.9449 | 0.9449 | nan | 0.9449 | 0.0 | 0.9449 |
73
- | 0.0301 | 2.0 | 320 | 0.1620 | 0.4717 | 0.9435 | 0.9435 | nan | 0.9435 | 0.0 | 0.9435 |
74
 
75
 
76
  ### Framework versions
 
1
  ---
2
  license: other
3
+ base_model: nvidia/mit-b0
4
  tags:
5
  - vision
6
  - image-segmentation
7
  - generated_from_trainer
 
8
  model-index:
9
  - name: segformer-b0-finetuned-segments-sidewalk-test
10
  results: []
 
17
 
18
  This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 1.3438
21
+ - Mean Iou: 0.1623
22
+ - Mean Accuracy: 0.2111
23
+ - Overall Accuracy: 0.7405
24
+ - Accuracy Unlabeled: nan
25
+ - Accuracy Flat-road: 0.8041
26
+ - Accuracy Flat-sidewalk: 0.9230
27
+ - Accuracy Flat-crosswalk: 0.0
28
+ - Accuracy Flat-cyclinglane: 0.4039
29
+ - Accuracy Flat-parkingdriveway: 0.0060
30
+ - Accuracy Flat-railtrack: nan
31
+ - Accuracy Flat-curb: 0.0
32
+ - Accuracy Human-person: 0.0
33
+ - Accuracy Human-rider: 0.0
34
+ - Accuracy Vehicle-car: 0.8846
35
+ - Accuracy Vehicle-truck: 0.0
36
+ - Accuracy Vehicle-bus: 0.0
37
+ - Accuracy Vehicle-tramtrain: nan
38
+ - Accuracy Vehicle-motorcycle: 0.0
39
+ - Accuracy Vehicle-bicycle: 0.0
40
+ - Accuracy Vehicle-caravan: 0.0
41
+ - Accuracy Vehicle-cartrailer: 0.0
42
+ - Accuracy Construction-building: 0.8642
43
+ - Accuracy Construction-door: 0.0
44
+ - Accuracy Construction-wall: 0.0
45
+ - Accuracy Construction-fenceguardrail: 0.0
46
+ - Accuracy Construction-bridge: 0.0
47
+ - Accuracy Construction-tunnel: nan
48
+ - Accuracy Construction-stairs: 0.0
49
+ - Accuracy Object-pole: 0.0
50
+ - Accuracy Object-trafficsign: 0.0
51
+ - Accuracy Object-trafficlight: 0.0
52
+ - Accuracy Nature-vegetation: 0.9187
53
+ - Accuracy Nature-terrain: 0.8205
54
+ - Accuracy Sky: 0.9200
55
+ - Accuracy Void-ground: 0.0
56
+ - Accuracy Void-dynamic: 0.0
57
+ - Accuracy Void-static: 0.0
58
+ - Accuracy Void-unclear: 0.0
59
+ - Iou Unlabeled: nan
60
+ - Iou Flat-road: 0.5280
61
+ - Iou Flat-sidewalk: 0.7452
62
+ - Iou Flat-crosswalk: 0.0
63
+ - Iou Flat-cyclinglane: 0.3868
64
+ - Iou Flat-parkingdriveway: 0.0059
65
+ - Iou Flat-railtrack: nan
66
+ - Iou Flat-curb: 0.0
67
+ - Iou Human-person: 0.0
68
+ - Iou Human-rider: 0.0
69
+ - Iou Vehicle-car: 0.6061
70
+ - Iou Vehicle-truck: 0.0
71
+ - Iou Vehicle-bus: 0.0
72
+ - Iou Vehicle-tramtrain: nan
73
+ - Iou Vehicle-motorcycle: 0.0
74
+ - Iou Vehicle-bicycle: 0.0
75
+ - Iou Vehicle-caravan: 0.0
76
+ - Iou Vehicle-cartrailer: 0.0
77
+ - Iou Construction-building: 0.5539
78
+ - Iou Construction-door: 0.0
79
+ - Iou Construction-wall: 0.0
80
+ - Iou Construction-fenceguardrail: 0.0
81
+ - Iou Construction-bridge: 0.0
82
+ - Iou Construction-tunnel: nan
83
+ - Iou Construction-stairs: 0.0
84
+ - Iou Object-pole: 0.0
85
+ - Iou Object-trafficsign: 0.0
86
+ - Iou Object-trafficlight: 0.0
87
+ - Iou Nature-vegetation: 0.7712
88
+ - Iou Nature-terrain: 0.6207
89
+ - Iou Sky: 0.8130
90
+ - Iou Void-ground: 0.0
91
+ - Iou Void-dynamic: 0.0
92
+ - Iou Void-static: 0.0
93
+ - Iou Void-unclear: 0.0
94
 
95
  ## Model description
96
 
 
119
 
120
  ### Training results
121
 
122
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
123
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
124
+ | 2.7716 | 0.125 | 20 | 3.1137 | 0.0811 | 0.1421 | 0.5939 | nan | 0.3543 | 0.8601 | 0.0001 | 0.0624 | 0.0009 | nan | 0.0059 | 0.0 | 0.0 | 0.7448 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7505 | 0.0004 | 0.0000 | 0.0 | 0.0 | nan | 0.0004 | 0.0154 | 0.0 | 0.0 | 0.9620 | 0.0107 | 0.6345 | 0.0 | 0.0 | 0.0015 | 0.0 | 0.0 | 0.2853 | 0.6123 | 0.0001 | 0.0571 | 0.0009 | 0.0 | 0.0057 | 0.0 | 0.0 | 0.4056 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4427 | 0.0003 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0070 | 0.0 | 0.0 | 0.5640 | 0.0101 | 0.4453 | 0.0 | 0.0 | 0.0011 | 0.0 |
125
+ | 2.3983 | 0.25 | 40 | 2.3114 | 0.0953 | 0.1473 | 0.6217 | nan | 0.5446 | 0.8620 | 0.0 | 0.0116 | 0.0001 | nan | 0.0003 | 0.0 | 0.0 | 0.6298 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8869 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9467 | 0.0435 | 0.6394 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.3736 | 0.6363 | 0.0 | 0.0114 | 0.0001 | nan | 0.0003 | 0.0 | 0.0 | 0.4702 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4103 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6126 | 0.0403 | 0.5883 | 0.0 | 0.0 | 0.0001 | 0.0 |
126
+ | 1.9364 | 0.375 | 60 | 1.9470 | 0.1125 | 0.1622 | 0.6555 | nan | 0.6129 | 0.9011 | 0.0 | 0.0015 | 0.0000 | nan | 0.0000 | 0.0 | 0.0 | 0.7328 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8377 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9614 | 0.1659 | 0.8151 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4018 | 0.6627 | 0.0 | 0.0015 | 0.0000 | nan | 0.0000 | 0.0 | 0.0 | 0.5428 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4751 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6545 | 0.1483 | 0.7132 | 0.0 | 0.0 | 0.0 | 0.0 |
127
+ | 1.8248 | 0.5 | 80 | 1.8423 | 0.1249 | 0.1766 | 0.6773 | nan | 0.7096 | 0.8967 | 0.0 | 0.0031 | 0.0001 | nan | 0.0000 | 0.0 | 0.0 | 0.8122 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8119 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9544 | 0.4021 | 0.8846 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4158 | 0.6886 | 0.0 | 0.0031 | 0.0001 | nan | 0.0000 | 0.0 | 0.0 | 0.5826 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5075 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6969 | 0.3488 | 0.7535 | 0.0 | 0.0 | 0.0 | 0.0 |
128
+ | 1.8107 | 0.625 | 100 | 1.6979 | 0.1344 | 0.1824 | 0.6868 | nan | 0.7597 | 0.8914 | 0.0 | 0.0116 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8460 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8479 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9342 | 0.4696 | 0.8944 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4201 | 0.7042 | 0.0 | 0.0116 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5888 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5129 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7334 | 0.4274 | 0.7687 | 0.0 | 0.0 | 0.0 | 0.0 |
129
+ | 1.5911 | 0.75 | 120 | 1.6101 | 0.1408 | 0.1922 | 0.6972 | nan | 0.7585 | 0.9043 | 0.0 | 0.0317 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.8168 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8677 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8795 | 0.7990 | 0.8994 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4462 | 0.7130 | 0.0 | 0.0317 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.6128 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5132 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7389 | 0.5323 | 0.7764 | 0.0 | 0.0 | 0.0 | 0.0 |
130
+ | 1.6869 | 0.875 | 140 | 1.5604 | 0.1406 | 0.1905 | 0.7016 | nan | 0.7813 | 0.9000 | 0.0 | 0.0166 | 0.0020 | nan | 0.0 | 0.0 | 0.0 | 0.8807 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8563 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9394 | 0.6490 | 0.8801 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4544 | 0.7211 | 0.0 | 0.0166 | 0.0020 | nan | 0.0 | 0.0 | 0.0 | 0.5683 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5343 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7401 | 0.5306 | 0.7923 | 0.0 | 0.0 | 0.0 | 0.0 |
131
+ | 1.395 | 1.0 | 160 | 1.5115 | 0.1436 | 0.1945 | 0.7109 | nan | 0.7718 | 0.9196 | 0.0 | 0.0812 | 0.0029 | nan | 0.0 | 0.0 | 0.0 | 0.8752 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8216 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9410 | 0.6934 | 0.9228 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4798 | 0.7282 | 0.0 | 0.0809 | 0.0029 | nan | 0.0 | 0.0 | 0.0 | 0.5696 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5451 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7332 | 0.5201 | 0.7904 | 0.0 | 0.0 | 0.0 | 0.0 |
132
+ | 1.4842 | 1.125 | 180 | 1.4582 | 0.1504 | 0.2010 | 0.7192 | nan | 0.8239 | 0.8991 | 0.0 | 0.1813 | 0.0016 | nan | 0.0 | 0.0 | 0.0 | 0.8714 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8660 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9219 | 0.7649 | 0.9006 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4825 | 0.7399 | 0.0 | 0.1805 | 0.0016 | nan | 0.0 | 0.0 | 0.0 | 0.5932 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5427 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7540 | 0.5687 | 0.8005 | 0.0 | 0.0 | 0.0 | 0.0 |
133
+ | 1.4327 | 1.25 | 200 | 1.4157 | 0.1555 | 0.2068 | 0.7253 | nan | 0.8297 | 0.8936 | 0.0 | 0.3055 | 0.0036 | nan | 0.0 | 0.0 | 0.0 | 0.8738 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8629 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9042 | 0.8321 | 0.9051 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4944 | 0.7401 | 0.0 | 0.3024 | 0.0036 | nan | 0.0 | 0.0 | 0.0 | 0.5952 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5470 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7452 | 0.5870 | 0.8050 | 0.0 | 0.0 | 0.0 | 0.0 |
134
+ | 1.572 | 1.375 | 220 | 1.3965 | 0.1599 | 0.2083 | 0.7319 | nan | 0.8294 | 0.8967 | 0.0 | 0.3786 | 0.0037 | nan | 0.0 | 0.0 | 0.0 | 0.8695 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8644 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9259 | 0.7706 | 0.9193 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4980 | 0.7405 | 0.0 | 0.3668 | 0.0036 | nan | 0.0 | 0.0 | 0.0 | 0.6125 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5476 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7613 | 0.6235 | 0.8037 | 0.0 | 0.0 | 0.0 | 0.0 |
135
+ | 1.2597 | 1.5 | 240 | 1.3644 | 0.1606 | 0.2103 | 0.7365 | nan | 0.8033 | 0.9166 | 0.0 | 0.3886 | 0.0060 | nan | 0.0 | 0.0 | 0.0 | 0.8849 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8813 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9033 | 0.8315 | 0.9054 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5225 | 0.7428 | 0.0 | 0.3727 | 0.0059 | nan | 0.0 | 0.0 | 0.0 | 0.6030 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5511 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7639 | 0.6031 | 0.8149 | 0.0 | 0.0 | 0.0 | 0.0 |
136
+ | 1.7608 | 1.625 | 260 | 1.3297 | 0.1610 | 0.2102 | 0.7368 | nan | 0.8097 | 0.9127 | 0.0 | 0.3923 | 0.0047 | nan | 0.0 | 0.0 | 0.0 | 0.8654 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8689 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9181 | 0.8314 | 0.9130 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5185 | 0.7447 | 0.0 | 0.3761 | 0.0047 | nan | 0.0 | 0.0 | 0.0 | 0.6169 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5503 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7600 | 0.6090 | 0.8109 | 0.0 | 0.0 | 0.0 | 0.0 |
137
+ | 1.4774 | 1.75 | 280 | 1.3179 | 0.1618 | 0.2106 | 0.7399 | nan | 0.7953 | 0.9246 | 0.0 | 0.4041 | 0.0066 | nan | 0.0 | 0.0 | 0.0 | 0.8769 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8654 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9207 | 0.8097 | 0.9252 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5312 | 0.7433 | 0.0 | 0.3854 | 0.0065 | nan | 0.0 | 0.0 | 0.0 | 0.6059 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5503 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7687 | 0.6161 | 0.8086 | 0.0 | 0.0 | 0.0 | 0.0 |
138
+ | 1.4301 | 1.875 | 300 | 1.3037 | 0.1621 | 0.2112 | 0.7406 | nan | 0.7913 | 0.9313 | 0.0 | 0.3997 | 0.0062 | nan | 0.0 | 0.0 | 0.0 | 0.8855 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8750 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9023 | 0.8278 | 0.9271 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5340 | 0.7429 | 0.0 | 0.3833 | 0.0061 | nan | 0.0 | 0.0 | 0.0 | 0.6074 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5494 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7753 | 0.6166 | 0.8106 | 0.0 | 0.0 | 0.0 | 0.0 |
139
+ | 1.4838 | 2.0 | 320 | 1.3438 | 0.1623 | 0.2111 | 0.7405 | nan | 0.8041 | 0.9230 | 0.0 | 0.4039 | 0.0060 | nan | 0.0 | 0.0 | 0.0 | 0.8846 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8642 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9187 | 0.8205 | 0.9200 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5280 | 0.7452 | 0.0 | 0.3868 | 0.0059 | nan | 0.0 | 0.0 | 0.0 | 0.6061 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5539 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7712 | 0.6207 | 0.8130 | 0.0 | 0.0 | 0.0 | 0.0 |
140
 
141
 
142
  ### Framework versions
config.json CHANGED
@@ -28,14 +28,80 @@
28
  256
29
  ],
30
  "id2label": {
31
- "0": "other",
32
- "1": "flat-sidewalk"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  },
34
  "image_size": 224,
35
  "initializer_range": 0.02,
36
  "label2id": {
37
- "flat-sidewalk": 1,
38
- "other": 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  },
40
  "layer_norm_eps": 1e-06,
41
  "mlp_ratios": [
 
28
  256
29
  ],
30
  "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "flat-road",
33
+ "2": "flat-sidewalk",
34
+ "3": "flat-crosswalk",
35
+ "4": "flat-cyclinglane",
36
+ "5": "flat-parkingdriveway",
37
+ "6": "flat-railtrack",
38
+ "7": "flat-curb",
39
+ "8": "human-person",
40
+ "9": "human-rider",
41
+ "10": "vehicle-car",
42
+ "11": "vehicle-truck",
43
+ "12": "vehicle-bus",
44
+ "13": "vehicle-tramtrain",
45
+ "14": "vehicle-motorcycle",
46
+ "15": "vehicle-bicycle",
47
+ "16": "vehicle-caravan",
48
+ "17": "vehicle-cartrailer",
49
+ "18": "construction-building",
50
+ "19": "construction-door",
51
+ "20": "construction-wall",
52
+ "21": "construction-fenceguardrail",
53
+ "22": "construction-bridge",
54
+ "23": "construction-tunnel",
55
+ "24": "construction-stairs",
56
+ "25": "object-pole",
57
+ "26": "object-trafficsign",
58
+ "27": "object-trafficlight",
59
+ "28": "nature-vegetation",
60
+ "29": "nature-terrain",
61
+ "30": "sky",
62
+ "31": "void-ground",
63
+ "32": "void-dynamic",
64
+ "33": "void-static",
65
+ "34": "void-unclear"
66
  },
67
  "image_size": 224,
68
  "initializer_range": 0.02,
69
  "label2id": {
70
+ "construction-bridge": 22,
71
+ "construction-building": 18,
72
+ "construction-door": 19,
73
+ "construction-fenceguardrail": 21,
74
+ "construction-stairs": 24,
75
+ "construction-tunnel": 23,
76
+ "construction-wall": 20,
77
+ "flat-crosswalk": 3,
78
+ "flat-curb": 7,
79
+ "flat-cyclinglane": 4,
80
+ "flat-parkingdriveway": 5,
81
+ "flat-railtrack": 6,
82
+ "flat-road": 1,
83
+ "flat-sidewalk": 2,
84
+ "human-person": 8,
85
+ "human-rider": 9,
86
+ "nature-terrain": 29,
87
+ "nature-vegetation": 28,
88
+ "object-pole": 25,
89
+ "object-trafficlight": 27,
90
+ "object-trafficsign": 26,
91
+ "sky": 30,
92
+ "unlabeled": 0,
93
+ "vehicle-bicycle": 15,
94
+ "vehicle-bus": 12,
95
+ "vehicle-car": 10,
96
+ "vehicle-caravan": 16,
97
+ "vehicle-cartrailer": 17,
98
+ "vehicle-motorcycle": 14,
99
+ "vehicle-tramtrain": 13,
100
+ "vehicle-truck": 11,
101
+ "void-dynamic": 32,
102
+ "void-ground": 31,
103
+ "void-static": 33,
104
+ "void-unclear": 34
105
  },
106
  "layer_norm_eps": 1e-06,
107
  "mlp_ratios": [
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5d41c3e1148071e4150c54eb3c460dbe9e861d4597781a1649937f2ea833dd1c
3
- size 14884776
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a9e173e6c0fae9c4a81189575b1c7c29e2c0df23af8b6df59b3610b51388f75
3
+ size 14918708
runs/May26_21-25-14_c62e72524a85/events.out.tfevents.1716758721.c62e72524a85.903.7 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23ddcb46712a0cbd08277baa5fe458801caae4c7bbf7613d3f2de553c6f9445d
3
+ size 154110
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3816c406b7742307057e32689f2999b2e0ef7a5c432c440dc87298b586e286d9
3
  size 5176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64b7f0530029ef3b068dd5a25d6388c32419578be782aece05633e8f8ea700d4
3
  size 5176