Upload 2 files
Browse files- models/predictionModule.onnx +3 -0
- plapt.py +111 -0
models/predictionModule.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7601e11190efd0f06e7aa1ae161e09efab5b674cc938807b901abddd9ef13594
|
3 |
+
size 4867404
|
plapt.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
from transformers import BertTokenizer, BertModel, RobertaTokenizer, RobertaModel
|
4 |
+
import re
|
5 |
+
import onnxruntime
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
class PredictionModule:
|
9 |
+
def __init__(self, model_path="models/predictionModule.onnx"):
|
10 |
+
"""Initialize the PredictionModule with the given ONNX model."""
|
11 |
+
self.session = onnxruntime.InferenceSession(model_path)
|
12 |
+
self.input_name = self.session.get_inputs()[0].name
|
13 |
+
|
14 |
+
# Normalization scaling parameters
|
15 |
+
self.mean = 6.51286529169358
|
16 |
+
self.scale = 1.5614094578916633
|
17 |
+
|
18 |
+
def convert_to_affinity(self, normalized):
|
19 |
+
return {
|
20 |
+
"neg_log10_affinity_M": (normalized * self.scale) + self.mean,
|
21 |
+
"affinity_uM" : (10**6) * (10**(-((normalized * self.scale) + self.mean)))
|
22 |
+
}
|
23 |
+
|
24 |
+
def predict(self, batch_data):
|
25 |
+
"""Run predictions on a batch of data."""
|
26 |
+
# Ensure data is in numpy array format and the correct dtype
|
27 |
+
batch_data = np.array(batch_data).astype(np.float32)
|
28 |
+
|
29 |
+
# Process each feature in the batch individually and store results
|
30 |
+
affinities = []
|
31 |
+
for feature in batch_data:
|
32 |
+
# Reshape the feature to match the model's expected input shape
|
33 |
+
feature = feature.reshape(1, -1)
|
34 |
+
# Run the model on the single feature
|
35 |
+
affinity_normalized = self.session.run(None, {self.input_name: feature, 'TrainingMode': np.array(False)})[0][0][0]
|
36 |
+
# Append the result
|
37 |
+
affinities.append(self.convert_to_affinity(affinity_normalized))
|
38 |
+
|
39 |
+
return affinities
|
40 |
+
|
41 |
+
class Plapt:
|
42 |
+
def __init__(self, prediction_module_path = "models/predictionModule.onnx", device='cuda'):
|
43 |
+
# Set device for computation
|
44 |
+
self.device = torch.device(device if torch.cuda.is_available() else 'cpu')
|
45 |
+
|
46 |
+
# Load protein tokenizer and encoder
|
47 |
+
self.prot_tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
|
48 |
+
self.prot_encoder = BertModel.from_pretrained("Rostlab/prot_bert").to(self.device)
|
49 |
+
|
50 |
+
# Load molecule tokenizer and encoder
|
51 |
+
self.mol_tokenizer = RobertaTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
52 |
+
self.mol_encoder = RobertaModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1").to(self.device)
|
53 |
+
|
54 |
+
self.cache = {}
|
55 |
+
|
56 |
+
# Load the prediction module ONNX model
|
57 |
+
self.prediction_module = PredictionModule(prediction_module_path)
|
58 |
+
|
59 |
+
def set_prediction_module(self, prediction_module_path):
|
60 |
+
self.prediction_module = PredictionModule(prediction_module_path)
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def preprocess_sequence(seq):
|
64 |
+
# Preprocess protein sequence
|
65 |
+
return " ".join(re.sub(r"[UZOB]", "X", seq))
|
66 |
+
|
67 |
+
def tokenize(self, prot_seqs, mol_smiles):
|
68 |
+
# Tokenize and encode protein sequences
|
69 |
+
prot_tokens = self.prot_tokenizer([self.preprocess_sequence(seq) for seq in prot_seqs],
|
70 |
+
padding=True,
|
71 |
+
max_length=3200,
|
72 |
+
truncation=True,
|
73 |
+
return_tensors='pt')
|
74 |
+
|
75 |
+
# Tokenize and encode molecules
|
76 |
+
mol_tokens = self.mol_tokenizer(mol_smiles,
|
77 |
+
padding=True,
|
78 |
+
max_length=278,
|
79 |
+
truncation=True,
|
80 |
+
return_tensors='pt')
|
81 |
+
return prot_tokens, mol_tokens
|
82 |
+
|
83 |
+
# Define the batch functions
|
84 |
+
@staticmethod
|
85 |
+
def make_batches(iterable, n=1):
|
86 |
+
length = len(iterable)
|
87 |
+
for ndx in range(0, length, n):
|
88 |
+
yield iterable[ndx:min(ndx + n, length)]
|
89 |
+
|
90 |
+
def predict_affinity(self, prot_seqs, mol_smiles, batch_size=2):
|
91 |
+
input_strs = list(zip(prot_seqs,mol_smiles))
|
92 |
+
affinities = []
|
93 |
+
for batch in self.make_batches(input_strs, batch_size):
|
94 |
+
batch_key = str(batch) # Convert batch to a string to use as a dictionary key
|
95 |
+
|
96 |
+
if batch_key in self.cache:
|
97 |
+
# Use cached features if available
|
98 |
+
features = self.cache[batch_key]
|
99 |
+
else:
|
100 |
+
# Tokenize and encode the batch, then cache the results
|
101 |
+
prot_tokens, mol_tokens = self.tokenize(*zip(*batch))
|
102 |
+
with torch.no_grad():
|
103 |
+
prot_representations = self.prot_encoder(**prot_tokens.to(self.device)).pooler_output.cpu()
|
104 |
+
mol_representations = self.mol_encoder(**mol_tokens.to(self.device)).pooler_output.cpu()
|
105 |
+
|
106 |
+
features = [torch.cat((prot, mol), dim=0) for prot, mol in zip(prot_representations, mol_representations)]
|
107 |
+
self.cache[batch_key] = features
|
108 |
+
|
109 |
+
affinities.extend(self.prediction_module.predict(features))
|
110 |
+
|
111 |
+
return affinities
|