Update README.md
Browse files
README.md
CHANGED
@@ -5,15 +5,91 @@ datasets:
|
|
5 |
- truro7/vn-law-questions-and-corpus
|
6 |
language:
|
7 |
- vi
|
8 |
-
|
9 |
-
- accuracy
|
10 |
-
- precision
|
11 |
-
- recall
|
12 |
base_model: hiieu/halong_embedding
|
13 |
-
|
14 |
library_name: sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
tags:
|
16 |
- legal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
---
|
19 |
|
@@ -25,7 +101,3 @@ The model is trained on a dataset of Vietnamese legal questions and correspondin
|
|
25 |
|
26 |
It uses Matryoshka loss during training and can be truncated to smaller dimensions, allowing for faster comparisons between queries and documents without sacrificing performance.
|
27 |
|
28 |
-
|
29 |
-
---
|
30 |
-
license: apache-2.0
|
31 |
-
---
|
|
|
5 |
- truro7/vn-law-questions-and-corpus
|
6 |
language:
|
7 |
- vi
|
8 |
+
|
|
|
|
|
|
|
9 |
base_model: hiieu/halong_embedding
|
10 |
+
|
11 |
library_name: sentence-transformers
|
12 |
+
|
13 |
+
metrics:
|
14 |
+
- cosine_accuracy@1
|
15 |
+
- cosine_accuracy@3
|
16 |
+
- cosine_accuracy@5
|
17 |
+
- cosine_accuracy@10
|
18 |
+
- cosine_precision@1
|
19 |
+
- cosine_precision@3
|
20 |
+
- cosine_precision@5
|
21 |
+
- cosine_precision@10
|
22 |
+
- cosine_recall@1
|
23 |
+
- cosine_recall@3
|
24 |
+
- cosine_recall@5
|
25 |
+
- cosine_recall@10
|
26 |
+
- cosine_ndcg@10
|
27 |
+
- cosine_mrr@10
|
28 |
+
- cosine_map@100
|
29 |
+
|
30 |
+
pipeline_tag: sentence-similarity
|
31 |
+
|
32 |
tags:
|
33 |
- legal
|
34 |
+
- sentence-transformers
|
35 |
+
- sentence-similarity
|
36 |
+
- feature-extraction
|
37 |
+
- generated_from_trainer
|
38 |
+
- loss:MatryoshkaLoss
|
39 |
+
- loss:MultipleNegativesRankingLoss
|
40 |
+
|
41 |
+
model-index:
|
42 |
+
- name: Halong Embedding
|
43 |
+
results:
|
44 |
+
- task:
|
45 |
+
type: information-retrieval
|
46 |
+
name: Information Retrieval
|
47 |
+
metrics:
|
48 |
+
- type: cosine_accuracy@1
|
49 |
+
value: 0.623
|
50 |
+
name: Cosine Accuracy@1
|
51 |
+
- type: cosine_accuracy@3
|
52 |
+
value: 0.792
|
53 |
+
name: Cosine Accuracy@3
|
54 |
+
- type: cosine_accuracy@5
|
55 |
+
value: 0.851
|
56 |
+
name: Cosine Accuracy@5
|
57 |
+
- type: cosine_accuracy@10
|
58 |
+
value: 0.900
|
59 |
+
name: Cosine Accuracy@10
|
60 |
+
- type: cosine_precision@1
|
61 |
+
value: 0.623
|
62 |
+
name: Cosine Precision@1
|
63 |
+
- type: cosine_precision@3
|
64 |
+
value: 0.412
|
65 |
+
name: Cosine Precision@3
|
66 |
+
- type: cosine_precision@5
|
67 |
+
value: 0.310
|
68 |
+
name: Cosine Precision@5
|
69 |
+
- type: cosine_precision@10
|
70 |
+
value: 0.184
|
71 |
+
name: Cosine Precision@10
|
72 |
+
- type: cosine_recall@1
|
73 |
+
value: 0.353
|
74 |
+
name: Cosine Recall@1
|
75 |
+
- type: cosine_recall@3
|
76 |
+
value: 0.608
|
77 |
+
name: Cosine Recall@3
|
78 |
+
- type: cosine_recall@5
|
79 |
+
value: 0.722
|
80 |
+
name: Cosine Recall@5
|
81 |
+
- type: cosine_recall@10
|
82 |
+
value: 0.823
|
83 |
+
name: Cosine Recall@10
|
84 |
+
- type: cosine_ndcg@10
|
85 |
+
value: 0.706
|
86 |
+
name: Cosine Ndcg@10
|
87 |
+
- type: cosine_mrr@10
|
88 |
+
value: 0.717
|
89 |
+
name: Cosine Mrr@10
|
90 |
+
- type: cosine_map@100
|
91 |
+
value: 0.645
|
92 |
+
name: Cosine Map@100
|
93 |
|
94 |
---
|
95 |
|
|
|
101 |
|
102 |
It uses Matryoshka loss during training and can be truncated to smaller dimensions, allowing for faster comparisons between queries and documents without sacrificing performance.
|
103 |
|
|
|
|
|
|
|
|