truro7 commited on
Commit
ec9a4c9
·
verified ·
1 Parent(s): cec2018

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -9
README.md CHANGED
@@ -5,15 +5,91 @@ datasets:
5
  - truro7/vn-law-questions-and-corpus
6
  language:
7
  - vi
8
- metrics:
9
- - accuracy
10
- - precision
11
- - recall
12
  base_model: hiieu/halong_embedding
13
- pipeline_tag: sentence-similarity
14
  library_name: sentence-transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  tags:
16
  - legal
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  ---
19
 
@@ -25,7 +101,3 @@ The model is trained on a dataset of Vietnamese legal questions and correspondin
25
 
26
  It uses Matryoshka loss during training and can be truncated to smaller dimensions, allowing for faster comparisons between queries and documents without sacrificing performance.
27
 
28
-
29
- ---
30
- license: apache-2.0
31
- ---
 
5
  - truro7/vn-law-questions-and-corpus
6
  language:
7
  - vi
8
+
 
 
 
9
  base_model: hiieu/halong_embedding
10
+
11
  library_name: sentence-transformers
12
+
13
+ metrics:
14
+ - cosine_accuracy@1
15
+ - cosine_accuracy@3
16
+ - cosine_accuracy@5
17
+ - cosine_accuracy@10
18
+ - cosine_precision@1
19
+ - cosine_precision@3
20
+ - cosine_precision@5
21
+ - cosine_precision@10
22
+ - cosine_recall@1
23
+ - cosine_recall@3
24
+ - cosine_recall@5
25
+ - cosine_recall@10
26
+ - cosine_ndcg@10
27
+ - cosine_mrr@10
28
+ - cosine_map@100
29
+
30
+ pipeline_tag: sentence-similarity
31
+
32
  tags:
33
  - legal
34
+ - sentence-transformers
35
+ - sentence-similarity
36
+ - feature-extraction
37
+ - generated_from_trainer
38
+ - loss:MatryoshkaLoss
39
+ - loss:MultipleNegativesRankingLoss
40
+
41
+ model-index:
42
+ - name: Halong Embedding
43
+ results:
44
+ - task:
45
+ type: information-retrieval
46
+ name: Information Retrieval
47
+ metrics:
48
+ - type: cosine_accuracy@1
49
+ value: 0.623
50
+ name: Cosine Accuracy@1
51
+ - type: cosine_accuracy@3
52
+ value: 0.792
53
+ name: Cosine Accuracy@3
54
+ - type: cosine_accuracy@5
55
+ value: 0.851
56
+ name: Cosine Accuracy@5
57
+ - type: cosine_accuracy@10
58
+ value: 0.900
59
+ name: Cosine Accuracy@10
60
+ - type: cosine_precision@1
61
+ value: 0.623
62
+ name: Cosine Precision@1
63
+ - type: cosine_precision@3
64
+ value: 0.412
65
+ name: Cosine Precision@3
66
+ - type: cosine_precision@5
67
+ value: 0.310
68
+ name: Cosine Precision@5
69
+ - type: cosine_precision@10
70
+ value: 0.184
71
+ name: Cosine Precision@10
72
+ - type: cosine_recall@1
73
+ value: 0.353
74
+ name: Cosine Recall@1
75
+ - type: cosine_recall@3
76
+ value: 0.608
77
+ name: Cosine Recall@3
78
+ - type: cosine_recall@5
79
+ value: 0.722
80
+ name: Cosine Recall@5
81
+ - type: cosine_recall@10
82
+ value: 0.823
83
+ name: Cosine Recall@10
84
+ - type: cosine_ndcg@10
85
+ value: 0.706
86
+ name: Cosine Ndcg@10
87
+ - type: cosine_mrr@10
88
+ value: 0.717
89
+ name: Cosine Mrr@10
90
+ - type: cosine_map@100
91
+ value: 0.645
92
+ name: Cosine Map@100
93
 
94
  ---
95
 
 
101
 
102
  It uses Matryoshka loss during training and can be truncated to smaller dimensions, allowing for faster comparisons between queries and documents without sacrificing performance.
103