|
""" |
|
Cloud Mask Prediction and Visualization Module |
|
|
|
This script processes Sentinel-2 satellite imagery bands to predict cloud masks |
|
using the omnicloudmask library. It reads blue, red, green, and near-infrared bands, |
|
resamples them as needed, creates a stacked array for prediction, and visualizes |
|
the cloud mask overlaid on the original RGB image. |
|
""" |
|
|
|
import rasterio |
|
import numpy as np |
|
from rasterio.enums import Resampling |
|
from omnicloudmask import predict_from_array |
|
import matplotlib.pyplot as plt |
|
from matplotlib.colors import ListedColormap |
|
import matplotlib.patches as mpatches |
|
|
|
def load_band(file_path, resample=False, target_height=None, target_width=None): |
|
""" |
|
Load a single band from a raster file with optional resampling. |
|
|
|
Args: |
|
file_path (str): Path to the raster file |
|
resample (bool): Whether to resample the band |
|
target_height (int, optional): Target height for resampling |
|
target_width (int, optional): Target width for resampling |
|
|
|
Returns: |
|
numpy.ndarray: Band data as float32 array |
|
""" |
|
with rasterio.open(file_path) as src: |
|
if resample and target_height is not None and target_width is not None: |
|
band_data = src.read( |
|
out_shape=(src.count, target_height, target_width), |
|
resampling=Resampling.bilinear |
|
)[0].astype(np.float32) |
|
else: |
|
band_data = src.read()[0].astype(np.float32) |
|
|
|
return band_data |
|
|
|
def prepare_input_array(base_path="jp2s/"): |
|
""" |
|
Prepare a stacked array of satellite bands for cloud mask prediction. |
|
|
|
This function loads blue, red, green, and near-infrared bands from Sentinel-2 imagery, |
|
resamples the NIR band if needed (from 20m to 10m resolution), and stacks the required |
|
bands for cloud mask prediction in CHW (channel, height, width) format. |
|
|
|
Args: |
|
base_path (str): Base directory containing the JP2 band files |
|
|
|
Returns: |
|
tuple: (stacked_array, rgb_image) |
|
- stacked_array: numpy.ndarray with bands stacked in CHW format for prediction |
|
- rgb_image: numpy.ndarray with RGB bands for visualization |
|
""" |
|
|
|
band_paths = { |
|
'blue': f"{base_path}B02.jp2", |
|
'green': f"{base_path}B03.jp2", |
|
'red': f"{base_path}B04.jp2", |
|
'nir': f"{base_path}B8A.jp2" |
|
} |
|
|
|
|
|
with rasterio.open(band_paths['red']) as src: |
|
target_height = src.height |
|
target_width = src.width |
|
|
|
|
|
blue_data = load_band(band_paths['blue']) |
|
green_data = load_band(band_paths['green']) |
|
red_data = load_band(band_paths['red']) |
|
nir_data = load_band( |
|
band_paths['nir'], |
|
resample=True, |
|
target_height=target_height, |
|
target_width=target_width |
|
) |
|
|
|
|
|
print(f"Band shapes - Blue: {blue_data.shape}, Green: {green_data.shape}, Red: {red_data.shape}, NIR: {nir_data.shape}") |
|
|
|
|
|
|
|
scale_factor = 10000.0 |
|
rgb_image = np.stack([ |
|
red_data / scale_factor, |
|
green_data / scale_factor, |
|
blue_data / scale_factor |
|
], axis=-1) |
|
|
|
|
|
rgb_image = np.clip(rgb_image, 0, 1) |
|
|
|
|
|
prediction_array = np.stack([red_data, green_data, nir_data], axis=0) |
|
|
|
return prediction_array, rgb_image |
|
|
|
def visualize_cloud_mask(rgb_image, cloud_mask, output_path="cloud_mask_visualization.png"): |
|
""" |
|
Visualize the cloud mask overlaid on the original RGB image. |
|
|
|
Args: |
|
rgb_image (numpy.ndarray): RGB image array (HWC format) |
|
cloud_mask (numpy.ndarray): Predicted cloud mask |
|
output_path (str): Path to save the visualization |
|
""" |
|
|
|
if cloud_mask.ndim > 2: |
|
|
|
print(f"Original cloud mask shape: {cloud_mask.shape}") |
|
cloud_mask = np.squeeze(cloud_mask) |
|
print(f"Squeezed cloud mask shape: {cloud_mask.shape}") |
|
|
|
|
|
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18, 6)) |
|
|
|
|
|
ax1.imshow(rgb_image) |
|
ax1.set_title("Original RGB Image") |
|
ax1.axis('off') |
|
|
|
|
|
|
|
cloud_cmap = ListedColormap(['green', 'red', 'yellow', 'blue']) |
|
|
|
|
|
im = ax2.imshow(cloud_mask, cmap=cloud_cmap, vmin=0, vmax=3) |
|
ax2.set_title("Cloud Mask") |
|
ax2.axis('off') |
|
|
|
|
|
legend_patches = [ |
|
mpatches.Patch(color='green', label='Clear'), |
|
mpatches.Patch(color='red', label='Thick Cloud'), |
|
mpatches.Patch(color='yellow', label='Thin Cloud'), |
|
mpatches.Patch(color='blue', label='Cloud Shadow') |
|
] |
|
ax2.legend(handles=legend_patches, bbox_to_anchor=(1.05, 1), loc='upper left') |
|
|
|
|
|
ax3.imshow(rgb_image) |
|
|
|
|
|
cloud_mask_rgba = np.zeros((*cloud_mask.shape, 4)) |
|
|
|
|
|
cloud_mask_rgba[cloud_mask == 0] = [0, 1, 0, 0.3] |
|
cloud_mask_rgba[cloud_mask == 1] = [1, 0, 0, 0.5] |
|
cloud_mask_rgba[cloud_mask == 2] = [1, 1, 0, 0.5] |
|
cloud_mask_rgba[cloud_mask == 3] = [0, 0, 1, 0.5] |
|
|
|
ax3.imshow(cloud_mask_rgba) |
|
ax3.set_title("RGB with Cloud Mask Overlay") |
|
ax3.axis('off') |
|
|
|
|
|
ax3.legend(handles=legend_patches, bbox_to_anchor=(1.05, 1), loc='upper left') |
|
|
|
|
|
plt.tight_layout() |
|
plt.savefig(output_path, dpi=300, bbox_inches='tight') |
|
plt.show() |
|
|
|
print(f"Visualization saved to {output_path}") |
|
|
|
def main(): |
|
""" |
|
Main function to run the cloud mask prediction and visualization workflow. |
|
""" |
|
|
|
input_array, rgb_image = prepare_input_array() |
|
|
|
|
|
pred_mask = predict_from_array(input_array) |
|
|
|
|
|
print("Cloud mask prediction results:") |
|
print(f"Cloud mask shape: {pred_mask.shape}") |
|
print(f"Unique classes in mask: {np.unique(pred_mask)}") |
|
|
|
|
|
if pred_mask.ndim > 2: |
|
|
|
flat_mask = np.squeeze(pred_mask) |
|
else: |
|
flat_mask = pred_mask |
|
|
|
print(f"Class distribution: Clear: {np.sum(flat_mask == 0)}, Thick Cloud: {np.sum(flat_mask == 1)}, " |
|
f"Thin Cloud: {np.sum(flat_mask == 2)}, Cloud Shadow: {np.sum(flat_mask == 3)}") |
|
|
|
|
|
visualize_cloud_mask(rgb_image, pred_mask) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|