File size: 2,479 Bytes
160f12d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.2
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Hyponatremia_M2_1000steps_1e6rate_SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Hyponatremia_M2_1000steps_1e6rate_SFT
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1323
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2447 | 0.2667 | 50 | 0.2331 |
| 0.2077 | 0.5333 | 100 | 0.3552 |
| 0.1536 | 0.8 | 150 | 0.1493 |
| 0.1357 | 1.0667 | 200 | 0.1433 |
| 0.1352 | 1.3333 | 250 | 0.1351 |
| 0.1335 | 1.6 | 300 | 0.1347 |
| 0.1334 | 1.8667 | 350 | 0.1326 |
| 0.1265 | 2.1333 | 400 | 0.1331 |
| 0.1292 | 2.4 | 450 | 0.1321 |
| 0.1288 | 2.6667 | 500 | 0.1320 |
| 0.1299 | 2.9333 | 550 | 0.1315 |
| 0.1266 | 3.2 | 600 | 0.1323 |
| 0.1293 | 3.4667 | 650 | 0.1315 |
| 0.1237 | 3.7333 | 700 | 0.1316 |
| 0.1241 | 4.0 | 750 | 0.1313 |
| 0.1263 | 4.2667 | 800 | 0.1320 |
| 0.124 | 4.5333 | 850 | 0.1321 |
| 0.1209 | 4.8 | 900 | 0.1323 |
| 0.1222 | 5.0667 | 950 | 0.1323 |
| 0.1244 | 5.3333 | 1000 | 0.1323 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.0.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1
|