File size: 4,070 Bytes
b3953fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: tsavage68/UTI_M2_1000steps_1e7rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: UTI2_M2_275steps_1e8rate_05beta_CSFTDPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# UTI2_M2_275steps_1e8rate_05beta_CSFTDPO

This model is a fine-tuned version of [tsavage68/UTI_M2_1000steps_1e7rate_SFT](https://huggingface.co/tsavage68/UTI_M2_1000steps_1e7rate_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6867
- Rewards/chosen: -0.0017
- Rewards/rejected: -0.0154
- Rewards/accuracies: 0.1700
- Rewards/margins: 0.0138
- Logps/rejected: -9.4048
- Logps/chosen: -4.5458
- Logits/rejected: -2.7057
- Logits/chosen: -2.7050

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 275

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6931        | 0.3333 | 25   | 0.6941          | 0.0016         | 0.0029           | 0.0700             | -0.0013         | -9.3682        | -4.5393      | -2.7069         | -2.7061       |
| 0.6849        | 0.6667 | 50   | 0.6964          | -0.0083        | -0.0028          | 0.1100             | -0.0055         | -9.3796        | -4.5591      | -2.7057         | -2.7049       |
| 0.6934        | 1.0    | 75   | 0.6896          | -0.0050        | -0.0129          | 0.1300             | 0.0079          | -9.3998        | -4.5524      | -2.7063         | -2.7056       |
| 0.6902        | 1.3333 | 100  | 0.6901          | -0.0010        | -0.0078          | 0.1400             | 0.0068          | -9.3896        | -4.5445      | -2.7066         | -2.7058       |
| 0.6942        | 1.6667 | 125  | 0.6876          | 0.0031         | -0.0090          | 0.1400             | 0.0121          | -9.3920        | -4.5362      | -2.7061         | -2.7053       |
| 0.6823        | 2.0    | 150  | 0.6875          | 0.0028         | -0.0094          | 0.1500             | 0.0122          | -9.3928        | -4.5369      | -2.7062         | -2.7055       |
| 0.6846        | 2.3333 | 175  | 0.6803          | 0.0047         | -0.0227          | 0.1700             | 0.0273          | -9.4193        | -4.5331      | -2.7064         | -2.7057       |
| 0.6766        | 2.6667 | 200  | 0.6874          | -0.0018        | -0.0138          | 0.1600             | 0.0120          | -9.4015        | -4.5461      | -2.7058         | -2.7050       |
| 0.6896        | 3.0    | 225  | 0.6873          | 0.0001         | -0.0126          | 0.1500             | 0.0127          | -9.3992        | -4.5423      | -2.7057         | -2.7050       |
| 0.6895        | 3.3333 | 250  | 0.6867          | -0.0017        | -0.0154          | 0.1700             | 0.0138          | -9.4048        | -4.5458      | -2.7057         | -2.7050       |
| 0.687         | 3.6667 | 275  | 0.6867          | -0.0017        | -0.0154          | 0.1700             | 0.0138          | -9.4048        | -4.5458      | -2.7057         | -2.7050       |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.0+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1