File size: 9,688 Bytes
7e1ca94
 
9bba860
7e1ca94
 
 
 
 
 
 
 
 
 
 
 
 
 
9bba860
7e1ca94
9bba860
 
 
 
 
 
 
 
 
7e1ca94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bba860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e1ca94
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: apache-2.0
base_model: tsavage68/UTI_M2_1000steps_1e7rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: UTI_M2_1000steps_1e5rate_03beta_CSFTDPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# UTI_M2_1000steps_1e5rate_03beta_CSFTDPO

This model is a fine-tuned version of [tsavage68/UTI_M2_1000steps_1e7rate_SFT](https://huggingface.co/tsavage68/UTI_M2_1000steps_1e7rate_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Rewards/chosen: 0.0
- Rewards/rejected: 0.0
- Rewards/accuracies: 0.0
- Rewards/margins: 0.0
- Logps/rejected: 0.0
- Logps/chosen: 0.0
- Logits/rejected: -2.7147
- Logits/chosen: -2.7147

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6931        | 0.3333  | 25   | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 0.6667  | 50   | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 1.0     | 75   | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 1.3333  | 100  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 1.6667  | 125  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 2.0     | 150  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 2.3333  | 175  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 2.6667  | 200  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 3.0     | 225  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 3.3333  | 250  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 3.6667  | 275  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 4.0     | 300  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 4.3333  | 325  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 4.6667  | 350  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 5.0     | 375  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 5.3333  | 400  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 5.6667  | 425  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 6.0     | 450  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 6.3333  | 475  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 6.6667  | 500  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 7.0     | 525  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 7.3333  | 550  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 7.6667  | 575  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 8.0     | 600  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 8.3333  | 625  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 8.6667  | 650  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 9.0     | 675  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 9.3333  | 700  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 9.6667  | 725  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 10.0    | 750  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 10.3333 | 775  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 10.6667 | 800  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 11.0    | 825  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 11.3333 | 850  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 11.6667 | 875  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 12.0    | 900  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 12.3333 | 925  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 12.6667 | 950  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 13.0    | 975  | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |
| 0.6931        | 13.3333 | 1000 | 0.6931          | 0.0            | 0.0              | 0.0                | 0.0             | 0.0            | 0.0          | -2.7147         | -2.7147       |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.0+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1