tsmatz commited on
Commit
4bdcb1f
·
1 Parent(s): 4439379

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - summarization
5
+ - generated_from_trainer
6
+ metrics:
7
+ - rouge
8
+ model-index:
9
+ - name: mt5_summarize_japanese
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # mt5_summarize_japanese
17
+
18
+ This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.8952
21
+ - Rouge1: 0.4625
22
+ - Rouge2: 0.2866
23
+ - Rougel: 0.3656
24
+ - Rougelsum: 0.3868
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 0.0005
44
+ - train_batch_size: 2
45
+ - eval_batch_size: 1
46
+ - seed: 42
47
+ - gradient_accumulation_steps: 16
48
+ - total_train_batch_size: 32
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 90
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
57
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
58
+ | 4.2501 | 0.36 | 100 | 3.3685 | 0.3114 | 0.1654 | 0.2627 | 0.2694 |
59
+ | 3.6436 | 0.72 | 200 | 3.0095 | 0.3023 | 0.1634 | 0.2684 | 0.2764 |
60
+ | 3.3044 | 1.08 | 300 | 2.8025 | 0.3414 | 0.1789 | 0.2912 | 0.2984 |
61
+ | 3.2693 | 1.44 | 400 | 2.6284 | 0.3616 | 0.1935 | 0.2979 | 0.3132 |
62
+ | 3.2025 | 1.8 | 500 | 2.5271 | 0.3790 | 0.2042 | 0.3046 | 0.3192 |
63
+ | 2.9772 | 2.17 | 600 | 2.4203 | 0.4083 | 0.2374 | 0.3422 | 0.3542 |
64
+ | 2.9133 | 2.53 | 700 | 2.3863 | 0.3847 | 0.2096 | 0.3316 | 0.3406 |
65
+ | 2.9383 | 2.89 | 800 | 2.3573 | 0.4016 | 0.2297 | 0.3361 | 0.3500 |
66
+ | 2.7608 | 3.25 | 900 | 2.3223 | 0.3999 | 0.2249 | 0.3461 | 0.3566 |
67
+ | 2.7864 | 3.61 | 1000 | 2.2293 | 0.3932 | 0.2219 | 0.3297 | 0.3445 |
68
+ | 2.7846 | 3.97 | 1100 | 2.2097 | 0.4386 | 0.2617 | 0.3766 | 0.3826 |
69
+ | 2.7495 | 4.33 | 1200 | 2.1879 | 0.4100 | 0.2449 | 0.3481 | 0.3551 |
70
+ | 2.6092 | 4.69 | 1300 | 2.1515 | 0.4398 | 0.2714 | 0.3787 | 0.3842 |
71
+ | 2.5598 | 5.05 | 1400 | 2.1195 | 0.4366 | 0.2545 | 0.3621 | 0.3736 |
72
+ | 2.5283 | 5.41 | 1500 | 2.0637 | 0.4274 | 0.2551 | 0.3649 | 0.3753 |
73
+ | 2.5947 | 5.77 | 1600 | 2.0588 | 0.4454 | 0.2800 | 0.3828 | 0.3921 |
74
+ | 2.5354 | 6.14 | 1700 | 2.0357 | 0.4253 | 0.2582 | 0.3546 | 0.3687 |
75
+ | 2.5203 | 6.5 | 1800 | 2.0263 | 0.4444 | 0.2686 | 0.3648 | 0.3764 |
76
+ | 2.5303 | 6.86 | 1900 | 1.9926 | 0.4455 | 0.2771 | 0.3795 | 0.3948 |
77
+ | 2.4953 | 7.22 | 2000 | 1.9576 | 0.4523 | 0.2873 | 0.3869 | 0.4053 |
78
+ | 2.4271 | 7.58 | 2100 | 1.9384 | 0.4455 | 0.2811 | 0.3713 | 0.3862 |
79
+ | 2.4462 | 7.94 | 2200 | 1.9230 | 0.4530 | 0.2846 | 0.3754 | 0.3947 |
80
+ | 2.3303 | 8.3 | 2300 | 1.9311 | 0.4519 | 0.2814 | 0.3755 | 0.3887 |
81
+ | 2.3916 | 8.66 | 2400 | 1.9213 | 0.4598 | 0.2897 | 0.3688 | 0.3889 |
82
+ | 2.5995 | 9.03 | 2500 | 1.9060 | 0.4526 | 0.2820 | 0.3733 | 0.3946 |
83
+ | 2.3348 | 9.39 | 2600 | 1.9021 | 0.4595 | 0.2856 | 0.3762 | 0.3988 |
84
+ | 2.4035 | 9.74 | 2700 | 1.8952 | 0.4625 | 0.2866 | 0.3656 | 0.3868 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.23.1
90
+ - Pytorch 1.12.1+cu102
91
+ - Datasets 2.6.1
92
+ - Tokenizers 0.13.1