File size: 2,178 Bytes
eb31b54 332eb14 eb31b54 6863a7e 6e02b29 eb31b54 2dfc11c eb31b54 2dfc11c eb31b54 2dfc11c eb31b54 2dfc11c eb31b54 2dfc11c eb31b54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
language:
- ja
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-ner-ja
results: []
widget:
- text: "鈴木は4月の陽気の良い日に、鈴をつけて熊本県の阿蘇山に登った"
- text: "中国では、中国共産党による一党統治が続く"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-ner-ja
(Japanese caption : 日本語の固有表現抽出のモデル)
This model is a fine-tuned NER (named entity recognition) token classification model of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) (pre-trained cross-lingual ```RobertaModel```) on Wikipedia Japanese NER dataset by Stockmark Inc.<br>
See [here](https://github.com/stockmarkteam/ner-wikipedia-dataset) for the license of this dataset.
## Intended uses & limitations
```python
from transformers import AutoModelForTokenClassification
from transformers import pipeline
model_name = "tsmatz/xlm-roberta-ner-ja"
model = AutoModelForTokenClassification.from_pretrained(model_name)
classifier = pipeline("token-classification", model=model_name)
classifier("鈴木は4月の陽気の良い日に、鈴をつけて熊本県の阿蘇山に登った")
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 446 | 0.1510 | 0.8457 |
| No log | 2.0 | 892 | 0.0626 | 0.9261 |
| No log | 3.0 | 1338 | 0.0366 | 0.9580 |
| No log | 4.0 | 1784 | 0.0196 | 0.9792 |
| No log | 5.0 | 2230 | 0.0173 | 0.9864 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1
|