File size: 47,501 Bytes
5f6eeda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:357
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v2-moe
widget:
- source_sentence: 'Last updated: September 4, 2024


    This guide will show you how to use the split tunneling feature on the ExpressVPN
    apps for Windows and Mac.


    Important: The split tunneling feature is not available on macOS 11 and above.
    Follow this guide to find out which version of macOS you are using.

    Note: Split tunneling is also not currently available on the ExpressVPN app for
    Windows 11 on ARM64.'
  sentences:
  - How to use Kodi with ExpressVPN on iOS
  - How to use the split tunneling feature
  - What’s new in ExpressVPN for Linux?
- source_sentence: 'Last updated: July 5, 2024


    Need a VPN or DNS for your device?

    Get ExpressVPN Now


    Password Health is a feature in ExpressVPN Keys designed to help improve your
    overall account security. It offers an assessment of your password security through
    a security score, as well as tips and guidance on how to improve it, protecting
    you against password hacks.


    Your security score is calculated based on the strength of your passwords, whether
    you use the same password more than once, and whether the website URLs you stored
    are secure. Your score will improve as you resolve these issues.


    Your logins and passwords are assessed locally on your device—they never leave
    your device. Learn more about the privacy of Password Health.


    To access Password Health, add at least one login, then tap on the number icon
    at the top-right of the Keys screen.


    How to improve your security score?


    Learn more about the security issues that can be affecting your security score
    and ways to improve it below.


    Weak passwords


    Weak passwords can be easy to guess or crack easily by both humans and computers,
    making them vulnerable to password theft or compromise. They include common dictionary
    words, such as “apple” or “boy” or words that are easy to guess, such as place
    names or the names of your partner.


    To keep all your accounts safe, generate strong and unique passwords in ExpressVPN
    Keys.


    Reused passwords


    A reused password is a password you use across multiple services or accounts.
    If your password is compromised, attackers may gain unauthorized access to all
    these accounts with the compromised password. The more accounts you have using
    the same password, the higher the risks involved.


    To keep all your accounts secure, use strong and unique passwords for all your
    accounts.


    Logins using an unsecure URL


    Unsecure URLs start with http:// instead of https://. Any data passing between
    you and the website is not encrypted and can be read by third parties, including
    your passwords, usernames, email address, and credit card numbers.


    To keep all your accounts safe, use only https:// in your URLs:


    On the Keys login information screen, tap Help Me Fix at the top.

    Tap Use HTTPS.

    Exposed passwords


    A password is exposed if it has been found in a list of passwords online, often
    as part of data breaches. Attackers often attempt to sign in to services by trying
    all known exposed passwords available on the dark web. The more accounts you have
    using the same exposed password, the more vulnerable you are to being hacked.


    Data breaches potentially put your passwords at risk and are being reported at
    an accelerated rate, sometimes multiple times a week. To minimize the risk of
    exposed passwords, use strong and unique passwords for all your accounts and update
    any exposed password as soon as ExpressVPN Keys alerts you to do so.


    Two-factor authentication not enabled


    Two-factor authentication (2FA) adds an extra layer of protection to your online
    accounts, preventing unauthorized access even if your passwords are compromised.


    To keep your accounts safe, you should enable 2FA where possible. ExpressVPN Keys
    lets you add 2FA codes to compatible accounts on the ExpressVPN app for Android
    and iOS. Once set up, Keys can easily generate 2FA codes—also known as time-based
    one-time passwords (TOTPs)—for websites or apps with 2FA enabled.


    Important: You can only view and copy 2FA codes on the ExpressVPN Keys browser
    extension. You will be able to add 2FA codes on the browser extension at a later
    date.


    Need help? Contact the ExpressVPN Support Team for immediate assistance.


    Back to top


    Was this article helpful?

    Yes No'
  sentences:
  - what is batch size in one line
  - What is password health?
  - How to set up ExpressVPN on Amazon Fire tablet
- source_sentence: "Thanks for the clarification that I can provide information on\
    \ ExpressVPN. I can provide some general information on ExpressVPN, or help with\
    \ troubleshooting common issues. I can provide explanations on how to install\
    \ and set up ExpressVPN on various devices. \n\nSome potential areas to explore\
    \ could be:\n\n1. Troubleshooting common issues with ExpressVPN, such as connection\
    \ problems, slow speeds, or DNS leaks.\n2. Providing step-by-step instructions\
    \ on how to install and set up ExpressVPN on different devices, such as Windows,\
    \ macOS, Android, iOS, or routers.\n3. Explaining ExpressVPN's features, such\
    \ as split tunneling, kill switch, and server locations.\n4. Discussing ExpressVPN's\
    \ pricing plans, refund policy, and customer support.\n\nWhat would you like to\
    \ know about ExpressVPN, or what type of issue would you like to troubleshoot?"
  sentences:
  - "What are the features of ExpressVPN?\n\nExpressVPN is known for its high-speed\
    \ performance and wide range of servers. Some of its key features include:\n\n\
    1. 128-bit AES encryption, \n2.  256-bit encryption,\n3.  128-bit Blowfish encryption,\n\
    4. 256-bit encryption,\n5.  AES encryption,\n6.  AES-256,\n7.  AES 256-bit encryption.\n\
    \nNote: The encryption methods are not as stated. \n\n"
  - I can provide information on ExpressVPN. What do you need help with?
  - "I'm trying to use the ExpressVPN app on my Windows 10 computer, but the VPN connection\
    \ isn't working. I've checked the account credentials, and they seem to be correct.\
    \ I've also tried restarting the Windows 10 computer and restarting the ExpressVPN\
    \ app. \n\n"
- source_sentence: 'Last updated: November 7, 2024


    Need a VPN or DNS for your device?

    Get ExpressVPN Now


    This guide will show you how to reset your recovery code for your ExpressVPN Keys
    account. You should reset your recovery code if you have lost it or believe it
    may have been compromised.


    To reset your recovery code, you will need your primary password. You can reset
    your recovery code using the ExpressVPN app for Android or the ExpressVPN Keys
    Chrome extension. This functionality is not available in the ExpressVPN app for
    iOS.


    ExpressVPN for Android

    In the ExpressVPN app for Android, tap Options.

    Tap Other Settings > Security > Reset your recovery code.

    Tap RESET RECOVERY CODE.

    Enter your primary password.

    Store your new recovery code in a safe place.

    ExpressVPN Keys Chrome extension

    In the ExpressVPN Keys Chrome extension, click Options.

    Go to Settings > Security > Reset Recovery Code.

    Click Reset Recovery Code.

    Enter your primary password.

    Store your new recovery code in a safe place.


    If you have lost both your primary password and your recovery code, contact the
    ExpressVPN Support Team to reset your password manager account.


    Back to top


    Was this article helpful?

    Yes No'
  sentences:
  - How is my ExpressVPN Keys data managed?
  - How to reset your recovery code
  - How to set up ExpressVPN on ASUSTOR with OpenVPN
- source_sentence: 'Last updated: October 21, 2024


    This guide is for users who are having issues streaming Max (formerly HBO Max)
    while connected to the VPN.


    To comply with the Max Terms of Use and ExpressVPN Terms of Service, you should
    connect to a server location that matches the country where you are currently
    located.


    Jump to…


    1. Change to a different VPN server location

    2. Sign out of the Max app, then sign in again

    3. Watch Max using your browser

    4. Contact ExpressVPN Support


    1. Change to a different VPN server location


    If you are a U.S. user having issues streaming Max, try changing to these VPN
    server locations in the following order:


    USA – San Francisco

    USA – Washington DC

    USA – New York

    USA – Los Angeles – 1


    Below are instructions for changing your VPN server location on:


    Windows

    Mac

    iOS

    Android

    Android TV

    Apple TV

    Linux

    Routers

    If you are streaming via the Max app, you should force-close it and reopen it
    each time you change location. Below are instructions for force-closing an app
    on:iOS: Swipe up from the bottom of the homescreen, keeping your finger pressed
    until app previews appear at left. Swipe to find the Max app preview, then swipe
    up to close the app.


    Android: On your Android device, open your multitasking interface. The way to
    do this varies depending on your device:


    If your device has three icons at the bottom of the screen, tap either the three
    vertical lines icon or the square icon.

    If your device features a single horizontal line at the bottom of the screen,
    swipe up from the bottom to the middle of the screen, hold for a second, then
    release.


    Next, swipe to find the Max app preview, then swipe to force-close the app. The
    direction you need to swipe will vary depending on your device.


    Android TV: Go to Settings, select Apps, and scroll to find the Max app. Select
    the app, then select Force Stop.


    Fire TV/Fire Stick: Go to Settings, select Applications, select Manage Installed
    Applications. Scroll to find the Max app. Select the app, then select Force Stop.


    Apple TV: Double-click the TV icon on your remote to see the apps currently running.
    Swipe to find the Max app preview, then swipe up to close the app.


    If you are a non-U.S. user having issues streaming Max, proceed to the next step.


    Need help? Contact the ExpressVPN Support Team for immediate assistance.


    Back to top


    2. Sign out of the Max app, then sign in again


    If you are using the Max app, sign out of it, restart your device, and then sign
    back in.


    Need help? Contact the ExpressVPN Support Team for immediate assistance.


    Back to top


    3. Watch Max on your browser


    Try streaming Max via your browser by going to https://www.max.com/login and signing
    in with your Max account details.


    If you are having issues streaming Max from your browser while connected to the
    VPN:


    Get the ExpressVPN browser extension (available for Windows, Mac, and Linux).
    To use the browser extension, you must also have the ExpressVPN app installed
    on your computer.

    U.S. users should try connecting to these server locations in the following order:

    USA – San Francisco

    USA – Washington DC

    USA – New York

    USA – Los Angeles – 1


    Non-U.S. users should proceed to the next step.


    Try using a different browser. The ExpressVPN browser extension is available on
    Windows, Mac, and Linux, and it works with Chrome, Firefox, Vivaldi, Chromium,
    Brave, and Microsoft Edge. The ExpressVPN app must also be installed.


    Need help? Contact the ExpressVPN Support Team for immediate assistance.


    Back to top


    4. Contact Support


    If you are still unable to stream Max while connected to the VPN, contact the
    ExpressVPN Support Team.


    Back to top


    ExpressVPN is optimized to work with Max so you can enjoy online privacy and security
    all the time, without the VPN interfering. It should never be used as a means
    of copyright circumvention, which is strictly against our Terms of Service. As
    we cannot see or control what you do while connected to our VPN, you are responsible
    at all times for complying with our terms, the Max Terms of Use, and any applicable
    laws. Compliance requires you to be located in the U.S. while streaming Max with
    ExpressVPN.

    Was this article helpful?

    Yes No'
  sentences:
  - Troubleshooting steps for streaming Max
  - "I can help you with various questions and issues related to ExpressVPN. What\
    \ do you need assistance with: \n\n"
  - How to choose the appropriate Wi-Fi settings on a router running ExpressVPN
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: ModernBERT Embed base Legal Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.775
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.825
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.875
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5875
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.775
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.825
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.875
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7464836502947895
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7041666666666667
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7103005547084493
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.775
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.875
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0925
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5875
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.775
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.875
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7552425519590626
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7083333333333333
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7123785914060513
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.625
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.775
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.85
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.875
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.625
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.175
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6125
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.775
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.85
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.875
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.751012115577437
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7108333333333333
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7160762727610553
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.625
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.725
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.775
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.875
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.625
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6125
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.725
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.775
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.875
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7406583468855168
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6992361111111112
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7050551531801532
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.625
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.75
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.625
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24166666666666664
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15500000000000003
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08249999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6125
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.75
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7078094654337568
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6793055555555555
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6907221236895149
      name: Cosine Map@100
---

# ModernBERT Embed base Legal Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) <!-- at revision f6a8873b415144a69ffc529ec1e234d1e00ee765 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tsss1/expressvpn_embeddingmodel")
# Run inference
sentences = [
    'Last updated: October 21, 2024\n\nThis guide is for users who are having issues streaming Max (formerly HBO Max) while connected to the VPN.\n\nTo comply with the Max Terms of Use and ExpressVPN Terms of Service, you should connect to a server location that matches the country where you are currently located.\n\nJump to…\n\n1. Change to a different VPN server location\n2. Sign out of the Max app, then sign in again\n3. Watch Max using your browser\n4. Contact ExpressVPN Support\n\n1. Change to a different VPN server location\n\nIf you are a U.S. user having issues streaming Max, try changing to these VPN server locations in the following order:\n\nUSA – San Francisco\nUSA – Washington DC\nUSA – New York\nUSA – Los Angeles – 1\n\nBelow are instructions for changing your VPN server location on:\n\nWindows\nMac\niOS\nAndroid\nAndroid TV\nApple TV\nLinux\nRouters\nIf you are streaming via the Max app, you should force-close it and reopen it each time you change location. Below are instructions for force-closing an app on:iOS: Swipe up from the bottom of the homescreen, keeping your finger pressed until app previews appear at left. Swipe to find the Max app preview, then swipe up to close the app.\n\nAndroid: On your Android device, open your multitasking interface. The way to do this varies depending on your device:\n\nIf your device has three icons at the bottom of the screen, tap either the three vertical lines icon or the square icon.\nIf your device features a single horizontal line at the bottom of the screen, swipe up from the bottom to the middle of the screen, hold for a second, then release.\n\nNext, swipe to find the Max app preview, then swipe to force-close the app. The direction you need to swipe will vary depending on your device.\n\nAndroid TV: Go to Settings, select Apps, and scroll to find the Max app. Select the app, then select Force Stop.\n\nFire TV/Fire Stick: Go to Settings, select Applications, select Manage Installed Applications. Scroll to find the Max app. Select the app, then select Force Stop.\n\nApple TV: Double-click the TV icon on your remote to see the apps currently running. Swipe to find the Max app preview, then swipe up to close the app.\n\nIf you are a non-U.S. user having issues streaming Max, proceed to the next step.\n\nNeed help?\xa0Contact the ExpressVPN Support Team for immediate assistance.\n\nBack to top\n\n2. Sign out of the Max app, then sign in again\n\nIf you are using the Max app, sign out of it, restart your device, and then sign back in.\n\nNeed help?\xa0Contact the ExpressVPN Support Team for immediate assistance.\n\nBack to top\n\n3. Watch Max on your browser\n\nTry streaming Max via your browser by going to https://www.max.com/login and signing in with your Max account details.\n\nIf you are having issues streaming Max from your browser while connected to the VPN:\n\nGet the ExpressVPN browser extension (available for Windows, Mac, and Linux). To use the browser extension, you must also have the ExpressVPN app installed on your computer.\nU.S. users should try connecting to these server locations in the following order:\nUSA – San Francisco\nUSA – Washington DC\nUSA – New York\nUSA – Los Angeles – 1\n\nNon-U.S. users should proceed to the next step.\n\nTry using a different browser. The ExpressVPN browser extension is available on Windows, Mac, and Linux, and it works with Chrome, Firefox, Vivaldi, Chromium, Brave, and Microsoft Edge. The ExpressVPN app must also be installed.\n\nNeed help?\xa0Contact the ExpressVPN Support Team for immediate assistance.\n\nBack to top\n\n4. Contact Support\n\nIf you are still unable to stream Max while connected to the VPN, contact the ExpressVPN Support Team.\n\nBack to top\n\nExpressVPN is optimized to work with Max so you can enjoy online privacy and security all the time, without the VPN interfering. It should never be used as a means of copyright circumvention, which is strictly against our Terms of Service. As we cannot see or control what you do while connected to our VPN, you are responsible at all times for complying with our terms, the Max Terms of Use, and any applicable laws. Compliance requires you to be located in the U.S. while streaming Max with ExpressVPN.\nWas this article helpful?\nYes No',
    'Troubleshooting steps for streaming Max',
    'I can help you with various questions and issues related to ExpressVPN. What do you need assistance with: \n\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256   | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.6        | 0.6        | 0.625     | 0.625      | 0.625      |
| cosine_accuracy@3   | 0.775      | 0.775      | 0.775     | 0.725      | 0.7        |
| cosine_accuracy@5   | 0.825      | 0.875      | 0.85      | 0.775      | 0.75       |
| cosine_accuracy@10  | 0.875      | 0.9        | 0.875     | 0.875      | 0.8        |
| cosine_precision@1  | 0.6        | 0.6        | 0.625     | 0.625      | 0.625      |
| cosine_precision@3  | 0.2667     | 0.2667     | 0.2667    | 0.25       | 0.2417     |
| cosine_precision@5  | 0.17       | 0.18       | 0.175     | 0.16       | 0.155      |
| cosine_precision@10 | 0.09       | 0.0925     | 0.09      | 0.09       | 0.0825     |
| cosine_recall@1     | 0.5875     | 0.5875     | 0.6125    | 0.6125     | 0.6125     |
| cosine_recall@3     | 0.775      | 0.775      | 0.775     | 0.725      | 0.7        |
| cosine_recall@5     | 0.825      | 0.875      | 0.85      | 0.775      | 0.75       |
| cosine_recall@10    | 0.875      | 0.9        | 0.875     | 0.875      | 0.8        |
| **cosine_ndcg@10**  | **0.7465** | **0.7552** | **0.751** | **0.7407** | **0.7078** |
| cosine_mrr@10       | 0.7042     | 0.7083     | 0.7108    | 0.6992     | 0.6793     |
| cosine_map@100      | 0.7103     | 0.7124     | 0.7161    | 0.7051     | 0.6907     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 357 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 357 samples:
  |         | positive                                                                             | anchor                                                                             |
  |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                             |
  | details | <ul><li>min: 21 tokens</li><li>mean: 322.47 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 32.25 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | anchor                                                                                                                              |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|
  | <code>I'd like to discuss common issues that users face when using ExpressVPN. <br><br>1. Slow speeds and connectivity issues.<br>2. Difficulty in setting up ExpressVPN on various devices such as routers, smart TVs, and gaming consoles.<br>3. Issues with unblocking geo-restricted content on popular streaming services like Netflix, Hulu, and BBC iPlayer.<br>4. Troubleshooting failed connections and unable to connect to a VPN server.<br><br>Which one of these topics would you like to discuss further, or is there something else you'd like to bring up?</code> | <code>I'd be happy to help with any questions or concerns you have about ExpressVPN. What would you like to know or discuss?</code> |
  | <code>I'd like to provide information about ExpressVPN, but I think it would be more helpful to get some assistance from you. <br><br>I'd like to know more about the process of setting up ExpressVPN on a router. Could you explain the general steps to follow and any potential issues that users may encounter during the setup process? Additionally, are there any specific router models that are known to be compatible with ExpressVPN?</code>                                                                                                                          | <code>I can help you with any question you have about ExpressVPN. What is it that you need help with?</code>                        |
  | <code>Last updated: January 11, 2023<br><br>Important: If your ExpressVPN free trial or subscription was initiated via the iOS App Store, refer to this guide.<br><br>This guide will explain how to get or extend an ExpressVPN subscription for iOS users who did not get a free trial or subscription via the App Store.<br><br>Note: Upgrades and renewals are not currently available within the ExpressVPN app for iOS.</code>                                                                                                                                              | <code>ExpressVPN iOS free trial or subscription expiring</code>                                                                     |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 2
- `gradient_accumulation_steps`: 4
- `learning_rate`: 2e-05
- `num_train_epochs`: 7
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 2
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 7
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.2235     | 10     | 2.9921        | -                      | -                      | -                      | -                      | -                     |
| 0.4469     | 20     | 0.9824        | -                      | -                      | -                      | -                      | -                     |
| 0.6704     | 30     | 0.6762        | -                      | -                      | -                      | -                      | -                     |
| 0.8939     | 40     | 0.0133        | -                      | -                      | -                      | -                      | -                     |
| 0.9832     | 44     | -             | 0.7669                 | 0.7701                 | -                      | -                      | -                     |
| 0.2235     | 10     | 0.0179        | -                      | -                      | -                      | -                      | -                     |
| 0.4469     | 20     | 0.2714        | -                      | -                      | -                      | -                      | -                     |
| 0.6704     | 30     | 0.0104        | -                      | -                      | -                      | -                      | -                     |
| 0.8939     | 40     | 0.0015        | -                      | -                      | -                      | -                      | -                     |
| 0.9832     | 44     | -             | 0.7442                 | 0.7594                 | 0.7465                 | 0.7149                 | 0.7046                |
| 1.1341     | 50     | 0.2207        | -                      | -                      | -                      | -                      | -                     |
| 1.3575     | 60     | 0.48          | -                      | -                      | -                      | -                      | -                     |
| 1.5810     | 70     | 0.003         | -                      | -                      | -                      | -                      | -                     |
| 1.8045     | 80     | 0.2985        | -                      | -                      | -                      | -                      | -                     |
| **1.9832** | **88** | **-**         | **0.7751**             | **0.774**              | **0.7821**             | **0.7746**             | **0.7365**            |
| 2.0447     | 90     | 0.0168        | -                      | -                      | -                      | -                      | -                     |
| 2.2682     | 100    | 0.0698        | -                      | -                      | -                      | -                      | -                     |
| 2.4916     | 110    | 0.0054        | -                      | -                      | -                      | -                      | -                     |
| 2.7151     | 120    | 0.0112        | -                      | -                      | -                      | -                      | -                     |
| 2.9385     | 130    | 0.0031        | -                      | -                      | -                      | -                      | -                     |
| 2.9832     | 132    | -             | 0.7569                 | 0.7537                 | 0.7565                 | 0.7588                 | 0.7251                |
| 3.1788     | 140    | 0.1794        | -                      | -                      | -                      | -                      | -                     |
| 3.4022     | 150    | 0.3266        | -                      | -                      | -                      | -                      | -                     |
| 3.6257     | 160    | 0.0006        | -                      | -                      | -                      | -                      | -                     |
| 3.8492     | 170    | 0.0003        | -                      | -                      | -                      | -                      | -                     |
| 3.9832     | 176    | -             | 0.7491                 | 0.7613                 | 0.7526                 | 0.7513                 | 0.7206                |
| 4.0894     | 180    | 0.2622        | -                      | -                      | -                      | -                      | -                     |
| 4.3128     | 190    | 0.0004        | -                      | -                      | -                      | -                      | -                     |
| 4.5363     | 200    | 0.0392        | -                      | -                      | -                      | -                      | -                     |
| 4.7598     | 210    | 0.3312        | -                      | -                      | -                      | -                      | -                     |
| 4.9832     | 220    | 0.0021        | 0.7548                 | 0.7527                 | 0.7466                 | 0.7568                 | 0.7101                |
| 5.2235     | 230    | 0.7593        | -                      | -                      | -                      | -                      | -                     |
| 5.4469     | 240    | 0.0004        | -                      | -                      | -                      | -                      | -                     |
| 5.6704     | 250    | 0.0003        | -                      | -                      | -                      | -                      | -                     |
| 5.8939     | 260    | 0.0154        | -                      | -                      | -                      | -                      | -                     |
| 5.9832     | 264    | -             | 0.7498                 | 0.7545                 | 0.7510                 | 0.7407                 | 0.7147                |
| 6.1341     | 270    | 0.0162        | -                      | -                      | -                      | -                      | -                     |
| 6.3575     | 280    | 0.447         | -                      | -                      | -                      | -                      | -                     |
| 6.5810     | 290    | 0.001         | -                      | -                      | -                      | -                      | -                     |
| 6.8045     | 300    | 0.1628        | -                      | -                      | -                      | -                      | -                     |
| 6.9832     | 308    | -             | 0.7465                 | 0.7552                 | 0.7510                 | 0.7407                 | 0.7078                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.3.1+cu121
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->