tsuneji commited on
Commit
7e68632
·
1 Parent(s): 2562dcf

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 198.19 +/- 17.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff27472b710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff27472b7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff27472b830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff27472b8c0>", "_build": "<function ActorCriticPolicy._build at 0x7ff27472b950>", "forward": "<function ActorCriticPolicy.forward at 0x7ff27472b9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff27472ba70>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff27472bb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff27472bb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff27472bc20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff27472bcb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff274aeb210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668327948059499002, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAD2en75eRWE/cp3gubC/g77RsaS97t6tPQAAAAAAAAAAYOBdPohq67zZHkM9SrvFu/vYUb5qY5a8AACAPwAAgD8NFIY9uNb2uUizybt/dve1q7zhO+YsYzUAAIA/AACAPxv57b7EOqs9uZkHvkZjRL6NdBW9ds8svgAAAAAAAAAAgFQivfZINroupFq4KdttNlrQ8roqDnQ3AACAPwAAgD+mlrw99mQ1uhYxFDwV8MA2TfzIumGSuTUAAIA/AACAP5r95z323Cy635kLuXA69LRDl4k5+t9UOAAAgD8AAIA/Jr2ZPSl4XLpxNoy6ohQstupu5DmKYKI5AACAPwAAgD9ap869SHOeuoJkMztm6SI4H3OEuis8z7kAAIA/AACAP8Y7Xj4O+7W8kSUVu+T0eznnox6+Ay4+OgAAgD8AAIA/TexMPq7J+LwTUUA9E+P0uxfCVr7c5Li8AACAPwAAgD/w4r8+KSUYO3SbSDtLgZk4p5IaPRtbaroAAIA/AACAP4AFzD1SgNi58mIAuzoFmbZg1qW5RoMNNgAAgD8AAIA/iLUSv21vFb7GygW8jSqJusP8Mz5icj86AACAPwAAgD9ATQS+2+qavNKISrylwiM86VsKPv7MBr0AAIA/AACAP3/2A7+8SDO+8ihTu1lKq7hM8l09Q41UOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICRoziXoGWUCUhpRSlIwBbJRN6AOMAXSUR0B5py0rsjVydX2UKGgGaAloD0MINC+H3Xc7YECUhpRSlGgVTegDaBZHQHmshIOH3111fZQoaAZoCWgPQwge+YOB534dQJSGlFKUaBVLx2gWR0B5vo8B+4LDdX2UKGgGaAloD0MIIVor2hwXQsCUhpRSlGgVTSMBaBZHQHnGdIsiB5J1fZQoaAZoCWgPQwibVgqBXBBHwJSGlFKUaBVNBgFoFkdAecaK+zt1IXV9lChoBmgJaA9DCI9Rnnk5l1hAlIaUUpRoFU3oA2gWR0B5yQ593KSxdX2UKGgGaAloD0MIFm2Oc5uAGUCUhpRSlGgVS+NoFkdAec/t7a7EpHV9lChoBmgJaA9DCDFdiNUfwSZAlIaUUpRoFUvraBZHQHnlE9pyp711fZQoaAZoCWgPQwg4TDRIweNIQJSGlFKUaBVLxmgWR0B591hb4agmdX2UKGgGaAloD0MIgjekUYEsX0CUhpRSlGgVTegDaBZHQHn7rR0EHMV1fZQoaAZoCWgPQwhIcCNli21aQJSGlFKUaBVN6ANoFkdAegfqGUOd5XV9lChoBmgJaA9DCIXpew3BdFZAlIaUUpRoFU3oA2gWR0B6CO55JK8MdX2UKGgGaAloD0MIpKXydoSnXECUhpRSlGgVTegDaBZHQHoVnO4XoDB1fZQoaAZoCWgPQwgqqKj6lbNgQJSGlFKUaBVN6ANoFkdAeh58AJb+tXV9lChoBmgJaA9DCExsPq4N41VAlIaUUpRoFU3oA2gWR0B6ILyTY/VzdX2UKGgGaAloD0MIh086kWBAVUCUhpRSlGgVTegDaBZHQHosoJzDGcZ1fZQoaAZoCWgPQwgdkIR9OwJfQJSGlFKUaBVN6ANoFkdAelRSSNfgJnV9lChoBmgJaA9DCF/Rrdf0bk3AlIaUUpRoFUvvaBZHQHpZyk9ECvJ1fZQoaAZoCWgPQwikbmdfeVgpwJSGlFKUaBVL6WgWR0B6WpWIXTEzdX2UKGgGaAloD0MIDveRWxOTaECUhpRSlGgVTfUBaBZHQHpi1D8cdYJ1fZQoaAZoCWgPQwgKZ7eWyXRCwJSGlFKUaBVNRAFoFkdAemXX2dupCXV9lChoBmgJaA9DCO6VeauuwzvAlIaUUpRoFUvjaBZHQHrq0tmL9/B1fZQoaAZoCWgPQwiSdTi6SjdQQJSGlFKUaBVN6ANoFkdAeu51WbPQfXV9lChoBmgJaA9DCJlLqrab9ltAlIaUUpRoFU3oA2gWR0B67xAQg9vCdX2UKGgGaAloD0MIiLt6FRldDUCUhpRSlGgVTSgBaBZHQHr0jRtxdY51fZQoaAZoCWgPQwjdDDfg8xM5wJSGlFKUaBVNJgFoFkdAewCn13+uNnV9lChoBmgJaA9DCNE+VvDbk19AlIaUUpRoFU3oA2gWR0B7ChsabWmQdX2UKGgGaAloD0MIe/Xx0Pc5YECUhpRSlGgVTegDaBZHQHsSa/M4cWF1fZQoaAZoCWgPQwhK06BoHjdgQJSGlFKUaBVN6ANoFkdAexVK7ZnL73V9lChoBmgJaA9DCLA73XniQU9AlIaUUpRoFU3oA2gWR0B7G+2OQyRCdX2UKGgGaAloD0MIs3xdhv8sOUCUhpRSlGgVTegDaBZHQHs/yxmkFfR1fZQoaAZoCWgPQwh/FHXmHllaQJSGlFKUaBVN6ANoFkdAe0Op1A7gbnV9lChoBmgJaA9DCJIHIos0t0JAlIaUUpRoFU0PAWgWR0B7SYLa24NJdX2UKGgGaAloD0MIiGcJMgIYXUCUhpRSlGgVTegDaBZHQHtOn3lCCz11fZQoaAZoCWgPQwgJMgIqnJFhQJSGlFKUaBVN6ANoFkdAe0+I55qubXV9lChoBmgJaA9DCIHoSZnUNVpAlIaUUpRoFU3oA2gWR0B7boKw6hg3dX2UKGgGaAloD0MICd6QRgVGI0CUhpRSlGgVTQgBaBZHQHuB3aN+9al1fZQoaAZoCWgPQwhEqFKzBzVdQJSGlFKUaBVN6ANoFkdAe5ITOxB3R3V9lChoBmgJaA9DCN7jTBO2RlpAlIaUUpRoFU3oA2gWR0B7l9Pdl/YrdX2UKGgGaAloD0MIURa+vtZ2YECUhpRSlGgVTegDaBZHQHwm48hcJMR1fZQoaAZoCWgPQwjoobYNo9xdQJSGlFKUaBVN6ANoFkdAfCpW+GoJiXV9lChoBmgJaA9DCO+pnPaUI2BAlIaUUpRoFU3oA2gWR0B8KuONo8ISdX2UKGgGaAloD0MIbojxmtf9ZECUhpRSlGgVTegDaBZHQHwvzaXa8Hx1fZQoaAZoCWgPQwiZ1xGHbF9bQJSGlFKUaBVN6ANoFkdAfDrTtLL6lHV9lChoBmgJaA9DCIdSexFt8VVAlIaUUpRoFU3oA2gWR0B8UQNWluWKdX2UKGgGaAloD0MIpvELryT6UUCUhpRSlGgVTegDaBZHQHxUkzKs+3Z1fZQoaAZoCWgPQwi2v7M9emNZQJSGlFKUaBVN6ANoFkdAfF5dmQKa5XV9lChoBmgJaA9DCATmIVO+TmNAlIaUUpRoFU0+A2gWR0B8blr30wrUdX2UKGgGaAloD0MIa32R0JZz8D+UhpRSlGgVTQgBaBZHQHx5JfYzzmR1fZQoaAZoCWgPQwh9I7pnXaM7wJSGlFKUaBVNHgFoFkdAfHsM2WIGhXV9lChoBmgJaA9DCBCWsaGbHR7AlIaUUpRoFU0mAWgWR0B8fzwVj7Q+dX2UKGgGaAloD0MIr3srEhO0KUCUhpRSlGgVTRYBaBZHQHyAdL+PzWh1fZQoaAZoCWgPQwhRvMrapkAkwJSGlFKUaBVNBQFoFkdAfIXzQNTcZnV9lChoBmgJaA9DCKuy74rglFpAlIaUUpRoFU3oA2gWR0B8hpUCJXQudX2UKGgGaAloD0MICHWRQllJW0CUhpRSlGgVTegDaBZHQHyJezD4xlB1fZQoaAZoCWgPQwhDPBIvT6dYQJSGlFKUaBVN6ANoFkdAfJH7XQMQVnV9lChoBmgJaA9DCIOKql/pvFDAlIaUUpRoFU0vAWgWR0B8l9cv/R3NdX2UKGgGaAloD0MIO1W+ZySQQMCUhpRSlGgVTYQBaBZHQHyolZ9uxbB1fZQoaAZoCWgPQwiSPxh47gNdQJSGlFKUaBVN6ANoFkdAfKvLLZBcA3V9lChoBmgJaA9DCFGDaRg+QFdAlIaUUpRoFU3oA2gWR0B8vp6NVBD5dX2UKGgGaAloD0MIA7NCke4PO8CUhpRSlGgVTUgBaBZHQHzDO/5+H8F1fZQoaAZoCWgPQwgK9fQReOdgQJSGlFKUaBVN6ANoFkdAfM7itq59VnV9lChoBmgJaA9DCERPyqSG4FxAlIaUUpRoFU3oA2gWR0B81Kr8zhxYdX2UKGgGaAloD0MIAtU/iGTYF0CUhpRSlGgVTVcBaBZHQHz4/6wdKdx1fZQoaAZoCWgPQwip3EQtzWJqQJSGlFKUaBVNSANoFkdAfXxb7CSA6XV9lChoBmgJaA9DCHQNMzSesCzAlIaUUpRoFU1TAWgWR0B9faRB/qgRdX2UKGgGaAloD0MIpgnbT8aOU0CUhpRSlGgVTegDaBZHQH2ghrnDBM11fZQoaAZoCWgPQwjJBPwaSZpcQJSGlFKUaBVN6ANoFkdAfb8FbFCLM3V9lChoBmgJaA9DCOBpMuNtglVAlIaUUpRoFU3oA2gWR0B9wbHGS6lMdX2UKGgGaAloD0MIc0nVdhPkV0CUhpRSlGgVTegDaBZHQH3Ht/FzdUN1fZQoaAZoCWgPQwiHTzqRYNBZQJSGlFKUaBVN6ANoFkdAfclsFMZgonV9lChoBmgJaA9DCHqLh/cc0mBAlIaUUpRoFU3oA2gWR0B90YRtgrpadX2UKGgGaAloD0MIgxjo2hcvU0CUhpRSlGgVTegDaBZHQH3VVMZgogF1fZQoaAZoCWgPQwgz/KcbKKNWQJSGlFKUaBVN6ANoFkdAfeBpw0fozXV9lChoBmgJaA9DCE62gTtQqUxAlIaUUpRoFU3oA2gWR0B96HktEofCdX2UKGgGaAloD0MIF2NgHccFWUCUhpRSlGgVTegDaBZHQH4CwrpaA4J1fZQoaAZoCWgPQwhv2SH+YfsSQJSGlFKUaBVNJwFoFkdAfhcpPykKu3V9lChoBmgJaA9DCO244XfTdFRAlIaUUpRoFU3oA2gWR0B+Gc9r433pdX2UKGgGaAloD0MI+mAZG7plUkCUhpRSlGgVTegDaBZHQH4eyq2jO9p1fZQoaAZoCWgPQwiw5gDBnE1iQJSGlFKUaBVN6ANoFkdAfipUVzp5eXV9lChoBmgJaA9DCHNH/8u11WDAlIaUUpRoFU1ZA2gWR0B+MFX8wYcedX2UKGgGaAloD0MINQcI5mg/aECUhpRSlGgVTZ4CaBZHQH4w2ZE2Hcl1fZQoaAZoCWgPQwjMQdDRqvI8wJSGlFKUaBVNGwFoFkdAfkYdoWYWtXV9lChoBmgJaA9DCPuVzodn6RJAlIaUUpRoFUvhaBZHQH5kgfMfRu11fZQoaAZoCWgPQwit3uF2aE5YQJSGlFKUaBVN6ANoFkdAfs2f/FR51XV9lChoBmgJaA9DCPERMSUSFWFAlIaUUpRoFU3oA2gWR0B+682ycCo1dX2UKGgGaAloD0MIHM78ag63WkCUhpRSlGgVTegDaBZHQH8GMG1QZXN1fZQoaAZoCWgPQwhGC9C2mstZQJSGlFKUaBVN6ANoFkdAfwh1LrX18XV9lChoBmgJaA9DCEta8Q0Fp2NAlIaUUpRoFU3oA2gWR0B/Dd5HEuQIdX2UKGgGaAloD0MI/WZiuhAdW0CUhpRSlGgVTegDaBZHQH8Pc3ZPEbZ1fZQoaAZoCWgPQwgjv36IDXthQJSGlFKUaBVN6ANoFkdAfxuwQ176YXV9lChoBmgJaA9DCEzHnGfswVZAlIaUUpRoFU3oA2gWR0B/K2hxo7FLdX2UKGgGaAloD0MIRtEDH4OqXkCUhpRSlGgVTegDaBZHQH84zl5nlGR1fZQoaAZoCWgPQwhyMnGrIFxdQJSGlFKUaBVN6ANoFkdAf3jNxEORT3V9lChoBmgJaA9DCC9RvTUwmGBAlIaUUpRoFU3oA2gWR0B/e7/JeVs2dX2UKGgGaAloD0MIcm2oGOemXkCUhpRSlGgVTegDaBZHQH+BZEc81XN1fZQoaAZoCWgPQwh+chQgCltYQJSGlFKUaBVN6ANoFkdAf5AZwGW2PXV9lChoBmgJaA9DCBE2PL1SnVpAlIaUUpRoFU3oA2gWR0B/mAzGgi/xdX2UKGgGaAloD0MIqgt4mWFQWkCUhpRSlGgVTegDaBZHQH+xEd7v5QB1fZQoaAZoCWgPQwiz0Tk/xapcQJSGlFKUaBVN6ANoFkdAf9OdGy5ZsHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfbeaaef46f076d7880c6a0682033b8ac280baf0b9c3d3815fc6f221bbcaf757
3
+ size 147146
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff27472b710>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff27472b7a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff27472b830>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff27472b8c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff27472b950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff27472b9e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff27472ba70>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff27472bb00>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff27472bb90>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff27472bc20>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff27472bcb0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff274aeb210>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1668327948059499002,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAD2en75eRWE/cp3gubC/g77RsaS97t6tPQAAAAAAAAAAYOBdPohq67zZHkM9SrvFu/vYUb5qY5a8AACAPwAAgD8NFIY9uNb2uUizybt/dve1q7zhO+YsYzUAAIA/AACAPxv57b7EOqs9uZkHvkZjRL6NdBW9ds8svgAAAAAAAAAAgFQivfZINroupFq4KdttNlrQ8roqDnQ3AACAPwAAgD+mlrw99mQ1uhYxFDwV8MA2TfzIumGSuTUAAIA/AACAP5r95z323Cy635kLuXA69LRDl4k5+t9UOAAAgD8AAIA/Jr2ZPSl4XLpxNoy6ohQstupu5DmKYKI5AACAPwAAgD9ap869SHOeuoJkMztm6SI4H3OEuis8z7kAAIA/AACAP8Y7Xj4O+7W8kSUVu+T0eznnox6+Ay4+OgAAgD8AAIA/TexMPq7J+LwTUUA9E+P0uxfCVr7c5Li8AACAPwAAgD/w4r8+KSUYO3SbSDtLgZk4p5IaPRtbaroAAIA/AACAP4AFzD1SgNi58mIAuzoFmbZg1qW5RoMNNgAAgD8AAIA/iLUSv21vFb7GygW8jSqJusP8Mz5icj86AACAPwAAgD9ATQS+2+qavNKISrylwiM86VsKPv7MBr0AAIA/AACAP3/2A7+8SDO+8ihTu1lKq7hM8l09Q41UOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICRoziXoGWUCUhpRSlIwBbJRN6AOMAXSUR0B5py0rsjVydX2UKGgGaAloD0MINC+H3Xc7YECUhpRSlGgVTegDaBZHQHmshIOH3111fZQoaAZoCWgPQwge+YOB534dQJSGlFKUaBVLx2gWR0B5vo8B+4LDdX2UKGgGaAloD0MIIVor2hwXQsCUhpRSlGgVTSMBaBZHQHnGdIsiB5J1fZQoaAZoCWgPQwibVgqBXBBHwJSGlFKUaBVNBgFoFkdAecaK+zt1IXV9lChoBmgJaA9DCI9Rnnk5l1hAlIaUUpRoFU3oA2gWR0B5yQ593KSxdX2UKGgGaAloD0MIFm2Oc5uAGUCUhpRSlGgVS+NoFkdAec/t7a7EpHV9lChoBmgJaA9DCDFdiNUfwSZAlIaUUpRoFUvraBZHQHnlE9pyp711fZQoaAZoCWgPQwg4TDRIweNIQJSGlFKUaBVLxmgWR0B591hb4agmdX2UKGgGaAloD0MIgjekUYEsX0CUhpRSlGgVTegDaBZHQHn7rR0EHMV1fZQoaAZoCWgPQwhIcCNli21aQJSGlFKUaBVN6ANoFkdAegfqGUOd5XV9lChoBmgJaA9DCIXpew3BdFZAlIaUUpRoFU3oA2gWR0B6CO55JK8MdX2UKGgGaAloD0MIpKXydoSnXECUhpRSlGgVTegDaBZHQHoVnO4XoDB1fZQoaAZoCWgPQwgqqKj6lbNgQJSGlFKUaBVN6ANoFkdAeh58AJb+tXV9lChoBmgJaA9DCExsPq4N41VAlIaUUpRoFU3oA2gWR0B6ILyTY/VzdX2UKGgGaAloD0MIh086kWBAVUCUhpRSlGgVTegDaBZHQHosoJzDGcZ1fZQoaAZoCWgPQwgdkIR9OwJfQJSGlFKUaBVN6ANoFkdAelRSSNfgJnV9lChoBmgJaA9DCF/Rrdf0bk3AlIaUUpRoFUvvaBZHQHpZyk9ECvJ1fZQoaAZoCWgPQwikbmdfeVgpwJSGlFKUaBVL6WgWR0B6WpWIXTEzdX2UKGgGaAloD0MIDveRWxOTaECUhpRSlGgVTfUBaBZHQHpi1D8cdYJ1fZQoaAZoCWgPQwgKZ7eWyXRCwJSGlFKUaBVNRAFoFkdAemXX2dupCXV9lChoBmgJaA9DCO6VeauuwzvAlIaUUpRoFUvjaBZHQHrq0tmL9/B1fZQoaAZoCWgPQwiSdTi6SjdQQJSGlFKUaBVN6ANoFkdAeu51WbPQfXV9lChoBmgJaA9DCJlLqrab9ltAlIaUUpRoFU3oA2gWR0B67xAQg9vCdX2UKGgGaAloD0MIiLt6FRldDUCUhpRSlGgVTSgBaBZHQHr0jRtxdY51fZQoaAZoCWgPQwjdDDfg8xM5wJSGlFKUaBVNJgFoFkdAewCn13+uNnV9lChoBmgJaA9DCNE+VvDbk19AlIaUUpRoFU3oA2gWR0B7ChsabWmQdX2UKGgGaAloD0MIe/Xx0Pc5YECUhpRSlGgVTegDaBZHQHsSa/M4cWF1fZQoaAZoCWgPQwhK06BoHjdgQJSGlFKUaBVN6ANoFkdAexVK7ZnL73V9lChoBmgJaA9DCLA73XniQU9AlIaUUpRoFU3oA2gWR0B7G+2OQyRCdX2UKGgGaAloD0MIs3xdhv8sOUCUhpRSlGgVTegDaBZHQHs/yxmkFfR1fZQoaAZoCWgPQwh/FHXmHllaQJSGlFKUaBVN6ANoFkdAe0Op1A7gbnV9lChoBmgJaA9DCJIHIos0t0JAlIaUUpRoFU0PAWgWR0B7SYLa24NJdX2UKGgGaAloD0MIiGcJMgIYXUCUhpRSlGgVTegDaBZHQHtOn3lCCz11fZQoaAZoCWgPQwgJMgIqnJFhQJSGlFKUaBVN6ANoFkdAe0+I55qubXV9lChoBmgJaA9DCIHoSZnUNVpAlIaUUpRoFU3oA2gWR0B7boKw6hg3dX2UKGgGaAloD0MICd6QRgVGI0CUhpRSlGgVTQgBaBZHQHuB3aN+9al1fZQoaAZoCWgPQwhEqFKzBzVdQJSGlFKUaBVN6ANoFkdAe5ITOxB3R3V9lChoBmgJaA9DCN7jTBO2RlpAlIaUUpRoFU3oA2gWR0B7l9Pdl/YrdX2UKGgGaAloD0MIURa+vtZ2YECUhpRSlGgVTegDaBZHQHwm48hcJMR1fZQoaAZoCWgPQwjoobYNo9xdQJSGlFKUaBVN6ANoFkdAfCpW+GoJiXV9lChoBmgJaA9DCO+pnPaUI2BAlIaUUpRoFU3oA2gWR0B8KuONo8ISdX2UKGgGaAloD0MIbojxmtf9ZECUhpRSlGgVTegDaBZHQHwvzaXa8Hx1fZQoaAZoCWgPQwiZ1xGHbF9bQJSGlFKUaBVN6ANoFkdAfDrTtLL6lHV9lChoBmgJaA9DCIdSexFt8VVAlIaUUpRoFU3oA2gWR0B8UQNWluWKdX2UKGgGaAloD0MIpvELryT6UUCUhpRSlGgVTegDaBZHQHxUkzKs+3Z1fZQoaAZoCWgPQwi2v7M9emNZQJSGlFKUaBVN6ANoFkdAfF5dmQKa5XV9lChoBmgJaA9DCATmIVO+TmNAlIaUUpRoFU0+A2gWR0B8blr30wrUdX2UKGgGaAloD0MIa32R0JZz8D+UhpRSlGgVTQgBaBZHQHx5JfYzzmR1fZQoaAZoCWgPQwh9I7pnXaM7wJSGlFKUaBVNHgFoFkdAfHsM2WIGhXV9lChoBmgJaA9DCBCWsaGbHR7AlIaUUpRoFU0mAWgWR0B8fzwVj7Q+dX2UKGgGaAloD0MIr3srEhO0KUCUhpRSlGgVTRYBaBZHQHyAdL+PzWh1fZQoaAZoCWgPQwhRvMrapkAkwJSGlFKUaBVNBQFoFkdAfIXzQNTcZnV9lChoBmgJaA9DCKuy74rglFpAlIaUUpRoFU3oA2gWR0B8hpUCJXQudX2UKGgGaAloD0MICHWRQllJW0CUhpRSlGgVTegDaBZHQHyJezD4xlB1fZQoaAZoCWgPQwhDPBIvT6dYQJSGlFKUaBVN6ANoFkdAfJH7XQMQVnV9lChoBmgJaA9DCIOKql/pvFDAlIaUUpRoFU0vAWgWR0B8l9cv/R3NdX2UKGgGaAloD0MIO1W+ZySQQMCUhpRSlGgVTYQBaBZHQHyolZ9uxbB1fZQoaAZoCWgPQwiSPxh47gNdQJSGlFKUaBVN6ANoFkdAfKvLLZBcA3V9lChoBmgJaA9DCFGDaRg+QFdAlIaUUpRoFU3oA2gWR0B8vp6NVBD5dX2UKGgGaAloD0MIA7NCke4PO8CUhpRSlGgVTUgBaBZHQHzDO/5+H8F1fZQoaAZoCWgPQwgK9fQReOdgQJSGlFKUaBVN6ANoFkdAfM7itq59VnV9lChoBmgJaA9DCERPyqSG4FxAlIaUUpRoFU3oA2gWR0B81Kr8zhxYdX2UKGgGaAloD0MIAtU/iGTYF0CUhpRSlGgVTVcBaBZHQHz4/6wdKdx1fZQoaAZoCWgPQwip3EQtzWJqQJSGlFKUaBVNSANoFkdAfXxb7CSA6XV9lChoBmgJaA9DCHQNMzSesCzAlIaUUpRoFU1TAWgWR0B9faRB/qgRdX2UKGgGaAloD0MIpgnbT8aOU0CUhpRSlGgVTegDaBZHQH2ghrnDBM11fZQoaAZoCWgPQwjJBPwaSZpcQJSGlFKUaBVN6ANoFkdAfb8FbFCLM3V9lChoBmgJaA9DCOBpMuNtglVAlIaUUpRoFU3oA2gWR0B9wbHGS6lMdX2UKGgGaAloD0MIc0nVdhPkV0CUhpRSlGgVTegDaBZHQH3Ht/FzdUN1fZQoaAZoCWgPQwiHTzqRYNBZQJSGlFKUaBVN6ANoFkdAfclsFMZgonV9lChoBmgJaA9DCHqLh/cc0mBAlIaUUpRoFU3oA2gWR0B90YRtgrpadX2UKGgGaAloD0MIgxjo2hcvU0CUhpRSlGgVTegDaBZHQH3VVMZgogF1fZQoaAZoCWgPQwgz/KcbKKNWQJSGlFKUaBVN6ANoFkdAfeBpw0fozXV9lChoBmgJaA9DCE62gTtQqUxAlIaUUpRoFU3oA2gWR0B96HktEofCdX2UKGgGaAloD0MIF2NgHccFWUCUhpRSlGgVTegDaBZHQH4CwrpaA4J1fZQoaAZoCWgPQwhv2SH+YfsSQJSGlFKUaBVNJwFoFkdAfhcpPykKu3V9lChoBmgJaA9DCO244XfTdFRAlIaUUpRoFU3oA2gWR0B+Gc9r433pdX2UKGgGaAloD0MI+mAZG7plUkCUhpRSlGgVTegDaBZHQH4eyq2jO9p1fZQoaAZoCWgPQwiw5gDBnE1iQJSGlFKUaBVN6ANoFkdAfipUVzp5eXV9lChoBmgJaA9DCHNH/8u11WDAlIaUUpRoFU1ZA2gWR0B+MFX8wYcedX2UKGgGaAloD0MINQcI5mg/aECUhpRSlGgVTZ4CaBZHQH4w2ZE2Hcl1fZQoaAZoCWgPQwjMQdDRqvI8wJSGlFKUaBVNGwFoFkdAfkYdoWYWtXV9lChoBmgJaA9DCPuVzodn6RJAlIaUUpRoFUvhaBZHQH5kgfMfRu11fZQoaAZoCWgPQwit3uF2aE5YQJSGlFKUaBVN6ANoFkdAfs2f/FR51XV9lChoBmgJaA9DCPERMSUSFWFAlIaUUpRoFU3oA2gWR0B+682ycCo1dX2UKGgGaAloD0MIHM78ag63WkCUhpRSlGgVTegDaBZHQH8GMG1QZXN1fZQoaAZoCWgPQwhGC9C2mstZQJSGlFKUaBVN6ANoFkdAfwh1LrX18XV9lChoBmgJaA9DCEta8Q0Fp2NAlIaUUpRoFU3oA2gWR0B/Dd5HEuQIdX2UKGgGaAloD0MI/WZiuhAdW0CUhpRSlGgVTegDaBZHQH8Pc3ZPEbZ1fZQoaAZoCWgPQwgjv36IDXthQJSGlFKUaBVN6ANoFkdAfxuwQ176YXV9lChoBmgJaA9DCEzHnGfswVZAlIaUUpRoFU3oA2gWR0B/K2hxo7FLdX2UKGgGaAloD0MIRtEDH4OqXkCUhpRSlGgVTegDaBZHQH84zl5nlGR1fZQoaAZoCWgPQwhyMnGrIFxdQJSGlFKUaBVN6ANoFkdAf3jNxEORT3V9lChoBmgJaA9DCC9RvTUwmGBAlIaUUpRoFU3oA2gWR0B/e7/JeVs2dX2UKGgGaAloD0MIcm2oGOemXkCUhpRSlGgVTegDaBZHQH+BZEc81XN1fZQoaAZoCWgPQwh+chQgCltYQJSGlFKUaBVN6ANoFkdAf5AZwGW2PXV9lChoBmgJaA9DCBE2PL1SnVpAlIaUUpRoFU3oA2gWR0B/mAzGgi/xdX2UKGgGaAloD0MIqgt4mWFQWkCUhpRSlGgVTegDaBZHQH+xEd7v5QB1fZQoaAZoCWgPQwiz0Tk/xapcQJSGlFKUaBVN6ANoFkdAf9OdGy5ZsHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2af77b4252be295c73e68944477ec48c1728afb1d0967e04b4b37842ed5b146a
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba619949749ce78fcf2d120f2e225684167fe7402dd2437dda62dd92d55c5d27
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (253 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 198.1873687848197, "std_reward": 17.934997147488815, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-13T08:36:14.109401"}