update model card README.md
Browse files
README.md
CHANGED
@@ -14,6 +14,28 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
# legal_deberta
|
15 |
|
16 |
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## Model description
|
19 |
|
@@ -43,6 +65,12 @@ The following hyperparameters were used during training:
|
|
43 |
|
44 |
### Training results
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
|
48 |
### Framework versions
|
|
|
14 |
# legal_deberta
|
15 |
|
16 |
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.4214
|
19 |
+
- Law Precision: 0.6449
|
20 |
+
- Law Recall: 0.92
|
21 |
+
- Law F1: 0.7582
|
22 |
+
- Law Number: 75
|
23 |
+
- Violated by Precision: 0.8625
|
24 |
+
- Violated by Recall: 0.92
|
25 |
+
- Violated by F1: 0.8903
|
26 |
+
- Violated by Number: 75
|
27 |
+
- Violated on Precision: 0.625
|
28 |
+
- Violated on Recall: 0.7333
|
29 |
+
- Violated on F1: 0.6748
|
30 |
+
- Violated on Number: 75
|
31 |
+
- Violation Precision: 0.5683
|
32 |
+
- Violation Recall: 0.6347
|
33 |
+
- Violation F1: 0.5997
|
34 |
+
- Violation Number: 616
|
35 |
+
- Overall Precision: 0.6064
|
36 |
+
- Overall Recall: 0.6944
|
37 |
+
- Overall F1: 0.6475
|
38 |
+
- Overall Accuracy: 0.9475
|
39 |
|
40 |
## Model description
|
41 |
|
|
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Law Precision | Law Recall | Law F1 | Law Number | Violated by Precision | Violated by Recall | Violated by F1 | Violated by Number | Violated on Precision | Violated on Recall | Violated on F1 | Violated on Number | Violation Precision | Violation Recall | Violation F1 | Violation Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:---------------------:|:------------------:|:--------------:|:------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
70 |
+
| 0.0391 | 11.11 | 500 | 0.3372 | 0.5652 | 0.8667 | 0.6842 | 75 | 0.8023 | 0.92 | 0.8571 | 75 | 0.6042 | 0.7733 | 0.6784 | 75 | 0.4690 | 0.6640 | 0.5497 | 616 | 0.5141 | 0.7146 | 0.5980 | 0.9283 |
|
71 |
+
| 0.0036 | 22.22 | 1000 | 0.4019 | 0.5667 | 0.9067 | 0.6974 | 75 | 0.7955 | 0.9333 | 0.8589 | 75 | 0.5455 | 0.72 | 0.6207 | 75 | 0.5681 | 0.6429 | 0.6032 | 616 | 0.5857 | 0.6992 | 0.6374 | 0.9443 |
|
72 |
+
| 0.0002 | 33.33 | 1500 | 0.3958 | 0.6 | 0.92 | 0.7263 | 75 | 0.8023 | 0.92 | 0.8571 | 75 | 0.5556 | 0.7333 | 0.6322 | 75 | 0.5476 | 0.6347 | 0.5880 | 616 | 0.5759 | 0.6944 | 0.6296 | 0.9463 |
|
73 |
+
| 0.0001 | 44.44 | 2000 | 0.4214 | 0.6449 | 0.92 | 0.7582 | 75 | 0.8625 | 0.92 | 0.8903 | 75 | 0.625 | 0.7333 | 0.6748 | 75 | 0.5683 | 0.6347 | 0.5997 | 616 | 0.6064 | 0.6944 | 0.6475 | 0.9475 |
|
74 |
|
75 |
|
76 |
### Framework versions
|