tttx
/

PEFT
TensorBoard
Safetensors
llama
alignment-handbook
trl
sft
Generated from Trainer
File size: 2,127 Bytes
e60ce4a
 
0b6320c
 
 
 
e60ce4a
 
 
0b6320c
e60ce4a
 
 
 
 
 
 
 
 
 
 
 
 
0b6320c
e60ce4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- barc0/transduction_formatted_test_time_finetune_for_evaluation
- barc0/transduction_formatted_rearc_dataset_100k
- barc0/transduction_heavy_100k_jsonl
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning

This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the barc0/transduction_formatted_test_time_finetune_for_evaluation, the barc0/transduction_formatted_rearc_dataset_100k and the barc0/transduction_heavy_100k_jsonl datasets.
It achieves the following results on the evaluation set:
- Loss: 0.0337

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.032         | 1.0   | 667  | 0.0307          |
| 0.0169        | 2.0   | 1334 | 0.0286          |
| 0.0019        | 3.0   | 2001 | 0.0337          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1