--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: 1-char-based-freeze_cnn-dropout0.1 results: [] --- # 1-char-based-freeze_cnn-dropout0.1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2454 - Wer: 0.1804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 48 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 5.3032 | 0.09 | 2500 | 7.0530 | 1.0 | | 3.4521 | 0.18 | 5000 | 3.6019 | 1.0 | | 3.3037 | 0.26 | 7500 | 3.4931 | 1.0 | | 3.2012 | 0.35 | 10000 | 3.4193 | 1.0 | | 2.3026 | 0.44 | 12500 | 1.9423 | 0.9873 | | 1.4238 | 0.53 | 15000 | 0.8772 | 0.6695 | | 1.1592 | 0.62 | 17500 | 0.6630 | 0.5011 | | 0.861 | 0.7 | 20000 | 0.5460 | 0.4239 | | 0.8123 | 0.79 | 22500 | 0.4794 | 0.3830 | | 0.7568 | 0.88 | 25000 | 0.4369 | 0.3463 | | 0.7182 | 0.97 | 27500 | 0.4111 | 0.3289 | | 0.6896 | 1.06 | 30000 | 0.4041 | 0.3102 | | 0.6655 | 1.14 | 32500 | 0.3933 | 0.2986 | | 0.5738 | 1.23 | 35000 | 0.3676 | 0.2829 | | 0.6361 | 1.32 | 37500 | 0.3533 | 0.2727 | | 0.6142 | 1.41 | 40000 | 0.3545 | 0.2716 | | 0.6346 | 1.5 | 42500 | 0.3428 | 0.2615 | | 0.5739 | 1.58 | 45000 | 0.3470 | 0.2578 | | 0.544 | 1.67 | 47500 | 0.3207 | 0.2490 | | 0.5283 | 1.76 | 50000 | 0.3202 | 0.2424 | | 0.5552 | 1.85 | 52500 | 0.3187 | 0.2379 | | 0.5218 | 1.94 | 55000 | 0.3242 | 0.2383 | | 0.4939 | 2.02 | 57500 | 0.3277 | 0.2418 | | 0.5141 | 2.11 | 60000 | 0.3058 | 0.2329 | | 0.5189 | 2.2 | 62500 | 0.3086 | 0.2273 | | 0.4993 | 2.29 | 65000 | 0.3005 | 0.2245 | | 0.5156 | 2.38 | 67500 | 0.2998 | 0.2223 | | 0.4787 | 2.46 | 70000 | 0.2940 | 0.2173 | | 0.5296 | 2.55 | 72500 | 0.3003 | 0.2225 | | 0.4759 | 2.64 | 75000 | 0.2995 | 0.2144 | | 0.485 | 2.73 | 77500 | 0.2882 | 0.2126 | | 0.4888 | 2.82 | 80000 | 0.2893 | 0.2189 | | 0.51 | 2.9 | 82500 | 0.2767 | 0.2046 | | 0.4703 | 2.99 | 85000 | 0.2899 | 0.2124 | | 0.4406 | 3.08 | 87500 | 0.2787 | 0.2068 | | 0.4328 | 3.17 | 90000 | 0.2823 | 0.2070 | | 0.4399 | 3.26 | 92500 | 0.2802 | 0.2058 | | 0.4788 | 3.34 | 95000 | 0.2741 | 0.2084 | | 0.4621 | 3.43 | 97500 | 0.2817 | 0.2038 | | 0.523 | 3.52 | 100000 | 0.2735 | 0.2015 | | 0.4689 | 3.61 | 102500 | 0.2631 | 0.1995 | | 0.4502 | 3.7 | 105000 | 0.2689 | 0.1986 | | 0.4402 | 3.78 | 107500 | 0.2726 | 0.1987 | | 0.4189 | 3.87 | 110000 | 0.2724 | 0.1994 | | 0.4526 | 3.96 | 112500 | 0.2596 | 0.1918 | | 0.4755 | 4.05 | 115000 | 0.2583 | 0.1900 | | 0.4374 | 4.14 | 117500 | 0.2590 | 0.1944 | | 0.4155 | 4.23 | 120000 | 0.2695 | 0.1961 | | 0.4463 | 4.31 | 122500 | 0.2605 | 0.1909 | | 0.4007 | 4.4 | 125000 | 0.2529 | 0.1891 | | 0.4156 | 4.49 | 127500 | 0.2568 | 0.1913 | | 0.4124 | 4.58 | 130000 | 0.2559 | 0.1889 | | 0.4085 | 4.67 | 132500 | 0.2610 | 0.1922 | | 0.4474 | 4.75 | 135000 | 0.2588 | 0.1961 | | 0.4098 | 4.84 | 137500 | 0.2512 | 0.1877 | | 0.3941 | 4.93 | 140000 | 0.2549 | 0.1891 | | 0.3917 | 5.02 | 142500 | 0.2544 | 0.1863 | | 0.4324 | 5.11 | 145000 | 0.2564 | 0.1882 | | 0.4255 | 5.19 | 147500 | 0.2536 | 0.1885 | | 0.3894 | 5.28 | 150000 | 0.2538 | 0.1860 | | 0.4108 | 5.37 | 152500 | 0.2539 | 0.1860 | | 0.4312 | 5.46 | 155000 | 0.2526 | 0.1849 | | 0.3786 | 5.55 | 157500 | 0.2504 | 0.1837 | | 0.4033 | 5.63 | 160000 | 0.2516 | 0.1852 | | 0.3973 | 5.72 | 162500 | 0.2570 | 0.1870 | | 0.3994 | 5.81 | 165000 | 0.2499 | 0.1846 | | 0.4183 | 5.9 | 167500 | 0.2489 | 0.1835 | | 0.3826 | 5.99 | 170000 | 0.2468 | 0.1847 | | 0.4103 | 6.07 | 172500 | 0.2477 | 0.1806 | | 0.4291 | 6.16 | 175000 | 0.2492 | 0.1835 | | 0.4417 | 6.25 | 177500 | 0.2464 | 0.1824 | | 0.3962 | 6.34 | 180000 | 0.2476 | 0.1815 | | 0.4633 | 6.43 | 182500 | 0.2447 | 0.1818 | | 0.422 | 6.51 | 185000 | 0.2455 | 0.1802 | | 0.4098 | 6.6 | 187500 | 0.2488 | 0.1814 | | 0.4018 | 6.69 | 190000 | 0.2453 | 0.1804 | | 0.4559 | 6.78 | 192500 | 0.2458 | 0.1823 | | 0.4033 | 6.87 | 195000 | 0.2451 | 0.1794 | | 0.3829 | 6.95 | 197500 | 0.2453 | 0.1804 | | 0.3676 | 7.04 | 200000 | 0.2454 | 0.1804 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.14.1